基于Java SSM框架实现影片推荐系统项目【项目源码】

基于java的SSM框架实现影片推荐系统演示

JSP技术介绍

JSP技术本身是一种脚本语言,但它的功能是十分强大的,因为它可以使用所有的JAVA类。当它与JavaBeans 类进行结合时,它可以使显示逻辑和内容分开,这就极大的方便了读者的需求。JavaBeans 可以对JSP技术的程序进行扩展,从而形成新的应用程序,而且JavaBeans的代码可以重复使用,所以就便于对程序进行维护。JavaBean 组件有内部的接口,可以帮助不同的人对系统进行访问。1999年,Sun微系统公司正式推出了JSP技术,这是一种动态技术,是基于整个JAVA体系和JavaServlet提出的,是具有普遍适用性的WEB技术,也是本系统设计的核心技术之一。JSP技术能够极大的提高WEB网页的运行速度。这些内容会与脚本结合,并且由JavaBean和Servlet组件封装。所有的脚本均在服务器端运行,JSP引擎会针对读者端所 提交的申请进行解释,然后生成脚本程序和JSP标识,然后通过HTML/XML页面将结果反馈给浏览器。因此,开发人员亲自设计最终页面的格式和HTML/XML标识时,完全可以使用JSP技术。

所以结合小说阅读网站的需求及功能模块的实现,使用JSP技术是最合适的,而且JSP的拓展性比较好,对于系统在后期使用过程中可以不断对系统功能进行拓展,是系统更完成,更方便的满足读者管理。

 JAVA简介

Java主要采用CORBA技术和安全模型,可以在互联网应用的数据保护。它还提供了对EJB(Enterprise JavaBeans)的全面支持,java servlet API,JSP(java server pages),和XML技术。Java是一种计算机编程语言,具有封装、继承和多态性三个主要特性,广泛应用于作者Web应用程序开发和移动应用程序开发。Java语言和一般编译器以及直译的区别在于,Java首先将源代码转换为字节码,然后将其转换为JVM的可执行文件,JVM可以在各种不同的JVM上运行。因此,实现了它的跨平台特性。虽然这使得Java在早期非常缓慢,但是随着Java的开发,它已经得到了改进。

访问数据库实现方法

(1)首先介绍一下web数据库搜索网络上的基本步骤:

第一步:检查消费者的数据,

第二步:你必须建立与数据库的连接;

第三步:搜索数据库;

第四步:数据的结构;

第五步:该读者 的结果被示出。

(2)系统,直到我MYSQL5.0 PHP集成开发环境,如使用WAMP服务器处于开机状态,并且更容易访问数据库的报告开发环境:

一个连接到MySQL数据库服务器Mysql_connect-;

语法:资源的mysql_connect(主机,读者 名,密码);

请选择数据库:mysql_select_db(数据库链接标识的名称);

关闭数据库:则mysql_close();

系统对MySQL数据库的两种连接方式

活动的MySQL/ MySQL库,或使用ODBC接口,MySQL数据库是一个双向链接。永久及非永久连接。

(1)永久连接:一个更永久的连接请求的最大优点是可以非常有效的读者站在密切的联系,当连接到MySQL服务器,就更好了。在起草该页面每一个孩子在这个过程中,而不是仅仅在任何时候,只有在到MySQL服务器请求连接的生命周期,一旦连接。此子过程是建立到服务器的单独连接可以是永久性的。

(2)非永久连接:他是短路。提交顺路到Web服务器,服务器处理请求并请求的页面,你要发送的浏览器读者端,然后连接断开。对于大多数网站,它经常通过有效高效率有关,但在大多数情况下,所使用的连接,但它是一个完整的时间,以避免出现任何问题,并可以增加的容量服务器承载。

 MySql数据库

Mysql的语言是非结构化的,读者 可以在数据上进行工作。因为Mysql的语言和结构比较简单,但是功能和存储信息量很强大,其速度、可靠性和适应性而备受关注并得到了普遍的应用。Mysql数据库在编程过程中的作用是很广泛的,为读者 进行数据查询带来了方便。Mysql数据库的应用特点:灵活性强,功能强大,语言相对要简洁很多。 

数据流程分析主要就是数据存储的储藏室,它是在计算机上进行的,而不是现实中的储藏室。数据库管理主要是数据存储、修改和增加以及数据表的建立。数据表的建立,可以对数据表中的数据进行调整,数据的重新组合及重新构造,保证数据的安全性。介于数据库的功能强大等特点,本系统的开发主要应用了Mysql进行对数据的管理。

系统页展示

如需要可扫取文章下方二维码联系得源码

如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。适合人群:1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值