输入n和m,求n和m的最小公倍数-最大公约数
什么是辗转相除法
辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377 ):
∵ 319÷377=0(余319)
∴(377,319);
∵ 377÷319=1(余58)
∴(319,58);
∵ 319÷58=5(余29)
∴ (58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
#include<stdio.h>
void max_min(int a,int b)
{
int k=0;
int c=0;
//最小公倍数思想://辗转相除法发
if(a<b)
{
a=a+b;
b=a-b;
a=a-b;
}
k=a*b; //乘积k
c=a%b; //余数c
while(c!=0)
{
a=b;
b=c;
c=a%b;
}
printf("%d和%d",b,k/b);
//最后余数为0的除数b为最大公约数
//乘积除于最大公约数为最小公倍数
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
max_min(n,m);
return 0;
}