c/c++最小公倍数-最大公约数

输入n和m,求n和m的最小公倍数-最大公约数

什么是辗转相除法
辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377 ):
∵ 319÷377=0(余319)
∴(377,319);
∵ 377÷319=1(余58)
∴(319,58)
∵ 319÷58=5(余29)
(58,29)
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。

#include<stdio.h>
void max_min(int a,int b)
{ 
int k=0; 
int c=0;
 //最小公倍数思想://辗转相除法发
 if(a<b)
 {
 	a=a+b;
 	b=a-b;
 	a=a-b;
 } 
 k=a*b;  //乘积k
 c=a%b; //余数c
 while(c!=0)
 {
 	a=b;
 	b=c;
 	c=a%b;
 
 } 

 printf("%d和%d",b,k/b); 
 //最后余数为0的除数b为最大公约数
 //乘积除于最大公约数为最小公倍数
}
int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	max_min(n,m);
	return 0; 
		
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值