2016总结

Preface
2016年过得总算是有惊无险。

直到昨天,过了公司年会后,觉得才算是过了2016,这一年,从一个学生,转变成了一名员工,角色的蜕变总觉得在不经意间。

3月份,搞定毕业论文,拿了个优秀论文,觉得还是做自己喜欢的东西好,虽说论文跨了专业甚至跨了领域,但是得到认可还是蛮欣慰。

6月份没什么意外顺利毕业。

毕业后留在了实习公司,15年11月份至今,其实学到了挺多的。

实习时很多时间是做可视化,R,Echarts这些当时都捣鼓得挺熟的。

看了很多R的书,基本上把当时市面上关于R的都大概看了:
R语言核心技术手册(第2版)
R语言编程艺术
ggplot2:数据分析与图形艺术
时间序列分析及应用:R语言(原书第2版)
机器学习与R语言
R语言与数据挖掘最佳实践和经典案例
数据挖掘:R语言实战
R语言与网站分析
但是平心而论,核心手册,编程艺术和ggplot2这三本是帮助最大的,特别是ggplot2,基本上整个论文所有的可视化图表以及后来的做算法的可视化,都是基于ggplot2.

除了R,由于接触到的数据越来越大,传统的串行算法在处理上有点吃力,就开始学scala这门语言,学习spark这个框架,主要是针对spark ML库,看了几步书:
programming in scala
快学scala
scala函数式编程
不得不说,scala真是一门会上瘾的语言,也很难学。

此外,由于本机环境的限制,工作后会linux的要求越来越高,不得不开始也着手linux,练习就在本地虚拟机下centos操作,鸟哥的Linux私房菜,写得着实不错。

最后,由于公司一些产品慢慢涉及到深度学习框架,python也不得撸袖上手,看了python核心编程前14章,与之前学的语言关联起来,确实容易上手。


当然,以上只是工具篇,工具慢慢用就熟了,但是本职做数据挖掘/机器学习,确实得日夜兼顾才能有所体会,有所提高。

这一年主要是与李航博士的统计学习方法,还有传说中的ESL为伍。
基本上动手实现了统计学习方法里面的大部分,ESL则越读越有启发。

只是,以上是下班后回家看的,这样明显不够,做产品开发时,没仔细统计,应该读过100篇论文,且有一些反复读不止10次,有一段时间做一个定位项目,每天到公司第一件事就是点开昨晚看不完的论文,这种状态持续了大概2-3个月,庆幸的是,后来从开方,测试,优化到部署,都是挺顺利的,也申请了个专利,觉得辛苦但是看到效果还是蛮开心的。

后来把机器学习用到本领域,也做了大大小小的几个产品,从无监督到监督,从简单的贴合业务能自动寻找k的kmeans,到稍微复杂的在线实时SVR做计算,等等,所有最终做成的产品,都是手把手撸出来,不调用任何第三方库。

最后,nupic框架HTM算法做异常检测着实不错,但是资料能不能多点呢,numenta的boss们。


2016大概就是这样
2017希望的就是保持这种状态就好,就这样。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值