[BZOJ 1045] HAOI 2008 糖果传递 & [BZOJ 3293] CQOI 2011 分金币 · 数学

这个是原题解,笔者修改了一些地方,更好懂一点。

中位数。

我们令xi为第i-1个人给i的金币数(如果小于0就是i给i-1金币)。

那么每个人最后的金币数可以用方程表示为:

a1 + x1 - x2 = p
a2 + x2 - x3 = p

......

an-1 + xn-1 - xn = p
an + xn - x1 = p

化简为:

x2 = a1 - p + x1 = x1 - C[1]
x3 = a2 - p + x2 = x1 - C[2]
......
xn = an-1 + xn-1 - p = x1 - C[n - 1]
x1 = an + xn - p = x1(最后一个方程没用,因为化简得x1 = x1,其实没必要化简,想想就知道了)


最终的结果就是sigma(xi),而C数组是可以确定的,所以我们只需要确定最优的x1的值,那么就是中位数咯(注意不是平均值,中位数表示的是人的编号,而平均值表示的是金币数量)

证明:我们假设当前有5个数,1号传了一个金币,传到2号然后3号然后最终到了4号(代价为3),此时4号已经超过了中位数3号,所以肯定不如从1号传到5号再传到4号(代价为2)。

#include <stdio.h>
#include <algorithm>
#include <iostream>
using namespace std;
#define ll long long

const int N = 100005;
ll n,a[N],s[N],ans,ave,mid;

int main(){
	cin>>n;ave=0;
	for (int i=1;i<=n;i++){
		cin>>a[i];
		ave+=a[i];
	}
	ave /= n;
	for (int i=1;i<=n;i++) s[i] = s[i-1] + a[i] - ave;
	sort(s+1,s+n+1);
	ans = 0; mid = s[(n + 1) / 2];
	for (int i=1;i<=n;i++)
		ans += abs(s[i] - mid);
	cout<<ans<<endl;
	return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值