预处理以后就是高斯消元模板了,而且还只有唯一解。。。n=2时,设球心是(x,y),则对于任意两个球面上的点(a,b) (c,d),有,化简以后把每两个相邻的点做成一条方程,n+1个点就构成了n个方程。
然后就高斯消元搞起。
然后就高斯消元搞起。
然后就没了。
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <cmath>
using namespace std;
#define zero 1e-6
int n;
double ans[15],a[15][15],d[15][15];
//a为方程组矩阵 d为读入数据
void init(){
cin>>n;
for (int i=1;i<=n+1;i++)
for (int j=1;j<=n;j++) cin>>d[i][j];
for (int i=1;i<=n;i++){
for (int j=1;j<=n;j++)
a[i][j] = 2 * (d[i+1][j]-d[i][j]),
a[i][n+1] += d[i+1][j] * d[i+1][j] - d[i][j] * d[i][j];
}
memset(ans,0,sizeof ans);
}
void gauss(){
for (int i=1;i<n;i++){
if (fabs(a[i][i])<zero) //要保证当前 处理的这项系数不为0
for (int j=i+1;j<=n;j++)
if (abs(a[j][i])>zero){
for (int k=1;k<=n+1;k++) swap(a[i][k],a[j][k]);
break;
}
for (int j=i+1;j<=n;j++){
double x = a[j][i] / a[i][i];
for (int k=i;k<=n+1;k++) a[j][k] -= a[i][k] * x;
}
}
ans[n]=a[n][n+1]/a[n][n];
for (int i=n-1;i;i--){
for (int j=i+1;j<=n;j++) a[i][n+1] -= ans[j]*a[i][j];
ans[i] = a[i][n+1] / a[i][i];
}
}
void print(){
for (int i=1;i<n;i++) printf("%.3lf ",ans[i]);
printf("%.3lf\n",ans[n]);
}
int main(){
init();
gauss();
print();
return 0;
}