[BZOJ 3156] 防御准备 · 斜率优化DP

跟佣神(orz)请教了一番大概会了基础的斜率优化:

基础的斜率优化一般就是两种情况:(斜率式子)<i 且i单调增或者 (斜率式子)>i 且i单调减。

对于第一种情况,也就是斜率单调增的,维护队头很好理解,维护队尾的时候,因为我们要保证斜率递增,所以如果(q[r],q[r-1])的斜率大于(i,q[r]),那么我们就把r给踢掉。

第二种情况就直接反过来想就可以了。

对于这题:

f[i]表示在第i个点上放守卫塔,裸的方程为

我们设x>y且x优于y,那么把式子化简以后得到:

然后如上文说的那样直接斜率优化搞一搞。。。

读入没开lld被坑了一发。。。

#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
#define ll long long

const int N=1e6+5;
ll n,a[N],l,r,q[N];
ll f[N];
ll i,j;

ll getY(ll x,ll y){
	return (2*f[x]+x*x+x)-(2*f[y]+y*y+y);
}

ll getX(ll x,ll y){
	return 2*(x-y);
}

int main(){
	scanf("%lld",&n);
	for (i=1;i<=n;i++)
		scanf("%lld",&a[i]);
	l=r=q[0]=0;
	for (i=1;i<=n;i++){
		while (l<r && getY(q[l+1],q[l])<i*getX(q[l+1],q[l])) l++;
		j=q[l];
		f[i]=f[j]+a[i]+(i-j)*(i-j-1)/2;
		while (l<r && getY(q[r],q[r-1]) * getX(i,q[r]) > getY(i,q[r]) * getX(q[r],q[r-1])) r--;
		q[++r]=i;
	}
	printf("%lld\n",f[n]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值