题意为求[a,b]中与n互质的数的个数。
可以将问题转化为,求出[1,b]和[1,a-1]中与n互质的数的个数然后用前者减去后者,就是答案。
然后求[1,a]区间中与n互质的数的个数实际上又可以转为求与n不互质的数的个数,在n小的时候可以用欧拉函数求,但是像这题n比较大的时候就适合用容斥原理。
容斥原理思想请自行百度。。。
orz:http://www.cnblogs.com/jiangjing/archive/2013/06/03/3115470.html
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
#define pb push_back
vector<int> p;
long long a,b,n;
long long ans,T;
void init(){
p.clear();
long x=n;
for (int i=2;i*i<x;i++) //将n质因数分解
if (x%i==0){
p.pb(i);
for (;x%i==0;x/=i);
}
if (x>1) p.pb(x);
}
long long calc(long long x){
long long sum=0,cnt,t=1<<(p.size()),val;
for (int i=1;i<t;i++){ //用二进制来表示某个因子有没有被选过
val=1;cnt=0; //val表示选取的质因子的乘积 cnt表示选了多少个质因子
for (int j=0;j<p.size();j++)
if (i & (1<<j))
cnt++,
val*=p[j];
if (cnt&1) sum+=x/val; //容斥原理 奇加偶减
else sum-=x/val;
}
return x-sum;
}
int main(){
scanf("%I64d",&T);
for (int i=1;i<=T;i++){
scanf("%I64d%I64d%I64d",&a,&b,&n);
init();
ans=calc(b)-calc(a-1);
printf("Case #%d: %I64d\n",i,ans);
}
return 0;
}