[HDU 4135] Co-prime · 容斥原理

题意为求[a,b]中与n互质的数的个数。

可以将问题转化为,求出[1,b]和[1,a-1]中与n互质的数的个数然后用前者减去后者,就是答案。

然后求[1,a]区间中与n互质的数的个数实际上又可以转为求n不互质的数的个数,在n小的时候可以用欧拉函数求,但是像这题n比较大的时候就适合用容斥原理。

容斥原理思想请自行百度。。。

orz:http://www.cnblogs.com/jiangjing/archive/2013/06/03/3115470.html

#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
#define pb push_back

vector<int> p;
long long a,b,n;
long long ans,T;

void init(){
	p.clear();
	long x=n;
	for (int i=2;i*i<x;i++)		//将n质因数分解 
		if (x%i==0){
			p.pb(i);
			for (;x%i==0;x/=i);
		}
	if (x>1) p.pb(x);
}

long long calc(long long x){
	long long sum=0,cnt,t=1<<(p.size()),val;
	for (int i=1;i<t;i++){	//用二进制来表示某个因子有没有被选过 
		val=1;cnt=0;		//val表示选取的质因子的乘积 cnt表示选了多少个质因子 
		for (int j=0;j<p.size();j++)
			if (i & (1<<j))
				cnt++,
				val*=p[j];
		if (cnt&1) sum+=x/val;	//容斥原理 奇加偶减 
			else sum-=x/val;
	}
	return x-sum;
}

int main(){
	scanf("%I64d",&T);
	for (int i=1;i<=T;i++){
		scanf("%I64d%I64d%I64d",&a,&b,&n);
		init();
		ans=calc(b)-calc(a-1);
		printf("Case #%d: %I64d\n",i,ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值