题目大意:给出一些点,保证是一个凸包上的顶点或边上的点,问这个凸包是否是唯一确定的,即是否能在凸包外再添加一点使得凸包变得更大。
思路:首先可以确定,对于凸包上的两个顶点,如果这两个点的连边上没有点的话,那么我们可以加一个点使得凸包变得更大
那么我们只要确定是否每两个相邻的顶点的边上是否已经有点就可以了。
判断方法:首先,对于三点i,i+1,i+2,如果向量<i,i+1>和<i,i+2>的叉积为0,则这三点共线。
对于已知的凸包上的点i,i+1,i+2,i+3,如果满足{i,i+1,i+2}和{i+1,i+2,i+3}都不能三点共线的话,那么i+1和i+2一定是凸包的两个顶点,即这两个点之间的边上是没有点的,这时就可以直接退出了。
另外有两种特殊情况:
1)所有的点都在同一条直线上,这时应输出NO
2)点数<=5,则这时不可能构成唯一确定的凸包,直接NO
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int N=1005;
struct arr{
int x,y;
}a[N];
bool cmp(const arr A,const arr B){return A.x<B.x || A.x==B.x && A.y<B.y;}
bool f[N];
int n,T,stack[N],top;
int cross(int x,int y,int z){
int x1,x2,y1,y2;
x1=a[x].x-a[y].x;y1=a[x].y-a[y].y;
x2=a[x].x-a[z].x;y2=a[x].y-a[z].y;
return x1*y2-x2*y1;
}
void ConvexHull(){
stack[top=1]=1;
for (int i=2;i<=n;i++){
while (top>1 && cross(stack[top-1],stack[top],i)>0)
top--;
stack[++top]=i;
}
int tmp=top;
for (int i=n-1;i>=1;i--){
while (top>tmp && cross(stack[top-1],stack[top],i)>0) top--;
stack[++top]=i;
}
}
bool judge(){
bool all=1; //判断点是否全部在一条直线上
stack[top+1]=stack[1];stack[top+2]=stack[2];stack[top+3]=stack[3];
for (int i=1;i<=top;i++)
if (cross(stack[i],stack[i+1],stack[i+2]))
{all=0;break;}
if (all) return 0;
for (int i=1;i<=top;i++)
if (cross(stack[i],stack[i+1],stack[i+2]) && cross(stack[i+1],stack[i+2],stack[i+3]))
return 0;
return 1;
}
int main(){
scanf("%d",&T);
while (T--){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
if (n<6){
puts("NO");
continue;
}
sort(a+1,a+n+1,cmp);
ConvexHull();
puts(judge()?"YES":"NO");
}
return 0;
}