|
详细内容 |
系统介绍 作为以信息技术为核心技术的智能交通系统,基础信息是实现先进、高性能的ITS的核心工作之一。信息的缺乏、模糊、虚假将严重影响ITS的应用效果。对于ITS的不同应用,基本信息并不相同。但下述基本信息对于大部分ITS子系统来说,都是非常基本、重要的: (1) 道路分布、状况等道路基本信息 (2) 道路流量、占有率等道路使用信息 (3) 资源分布、分配、可用性等资源信息 (4) 车牌号码、车型、所有者等车辆信息 (5) 驾驶执照、违章记录等人员信息 这些基本信息构成了ITS实现其功能和目标的基础,如何采集、分析、利用这些信息是ITS中的核心问题和挑战。 其中,车辆牌照号码作为车辆管理的重要标识和手段,唯一代表了一个车辆。车牌号码的初始登记很容易,每辆上路车辆都必须上牌之后才能通行;但在登记之后的车牌号码采集、跟踪则是一项巨大、艰难的挑战。目前在需要现场采集车牌的应用场合,主要还是利用人工辨认车牌,并输入ITS系统中进行利用,效率很低,只能在很小的范围和数量上使用。 为了自动获得车牌号码,车牌识别系统应运而生。 车牌识别系统以通行车辆的视频图像作为处理对象,通过图像数字化、图像处理和光学字符识别技术实现车牌号码的识别。 随着道路交通的不断发展和车辆管理体制的不断完善,使图像场景日益简单化和标准化,这为以图像理解为基础的车牌使别系统进入实际应用领域提供了契机。 车牌号码作为车辆的唯一标识,对其的自动识别可以实现车辆的自动监控、自动登记、自动验证、自动报警、自动放行、自动统计等众多功能: (1)自动监控:通过识别通行车辆的车牌号码,可以对通行车辆进行监控;在不远的将来,通过大批量安装车牌识别系统,可以发现、跟踪任意车辆的行踪,实现超越幻想的车辆监控功能。 (2)自动登记:通过对进入特定场合的车辆进行车牌识别,对其进行登记。 如登记进入小区、停车场、封闭式高速公路等车辆。 (3)自动验证:通过车牌识别,验证车辆是否为指定或登记过的车辆。如对于驶出小区的车辆验证其是否为驶入车辆、对离开封闭式高速公路的车辆验证其是否为对应的驶入车辆,对进入机密机关的车辆验证是否为有权限车辆等等。 (4)自动报警:通过车牌识别,对自动验证失败的车辆、黑名单车辆(涉案、违章、逃费、逃税等等)等进行自动的报警,以进行实时的跟踪、布控、处理。 (5)自动放行:通过车牌识别,对通过关卡、大门、收费站,检查站等的车辆通过自动验证确认后进行自动放行,提高车辆通行率。 (6)自动统计:可以对通过的车辆进行自动的统计,确定车流量、道路占有率、车流性质等等。 作为上述自动功能的实现,车牌识别系统可以有很多具体应用,如: (1) 高速公路收费系统,用于发现换卡、换牌、舞弊等逃费现象 (2) 卡口监控,用于发现黑名单车辆 (3) 小区、停车场管理,用于自动登记、验证、放行出入车辆 (4) 超速布控、电子警察统,用于发现违章车辆并进行布控拦截 (5) 车流数量、性质统计,用于道路规划和交通诱导等 (6) 移动车载式车牌识别系统,作为移动式卡口、拦截布控、车流统计等 车牌识别技术的原理 车牌识别是利用车辆的动态视频或静态图像进行车牌号码自动识别的模式识别系统,一般具有识别车牌号码、车牌颜色等功能;某些车牌识别系统还具有通过视频图像判断车辆驶入视野,进行自动(视频)触发的功能。 1.视频触发 具备视频触发的车牌识别系统,首先对视频信号中的一帧(场)的信号进行图像采集,数字化,得到对应的数字图像;然后对其进行分析,判断其中是否有车辆;若认为有车辆通行,则进入到下一步进行车牌识别;否则继续采集视频的帧信号,进行处理。 进行视频触发的系统,需要具备很高的处理速度,以在基本不丢帧的情况下实现图像处理。若处理慢,则在处理过程中会遗漏一些帧,导致系统不能正确触发行驶速度较快的车辆,同时也难以保证在有利于识别的位置触发,影响系统识别率。因此系统对于图像采集、处理的速度要求很高。 2.车牌号码、颜色识别 为了进行车牌识别,需要以下几个基本的步骤: (1) 车牌定位,定位图片中的车牌。 (2) 车牌字符分割,把车牌中的车牌字符分割出来。 (3) 车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。 车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
图1 车牌识别系统示意图 作为OCR技术的实际应用,车牌识别系统的识别率与车牌质量和拍摄质量密切相关。 实际车辆的车牌质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、车牌被遮挡、车牌倾斜、高亮反光、多车牌、假车牌等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,另外一方面也正是车牌识别系统的困难和挑战所在。 下图是一些特殊情况车牌的示例:
图2 特殊车牌示例 鉴于上述原因,车牌识别系统的识别率通常在不同场合,不同性质的车流中不同;因此不同厂商产品的识别率也难以根据其提供的识别率指标作直接的横向比较。 车牌识别算法 车牌识别算法由三个主要算法组成,分别为车牌定位算法,车牌字符分割算法和车牌字符识别算法。 1) 车牌定位算法车牌定位算法在车辆图片中定位出车牌,根据车牌字符分割算法的不同,可能要求进行精确的车牌定位,也可能只需进行粗略定位,在字符分割的过程中逐步确定车牌的精确位置。 车牌定位算法在中是非常重要的一个环节,要求对于各种复杂情况均能定位车牌,以满足车牌识别、车牌图像匹配和车牌亮度反馈控制的需要。
图3 车牌定位算法在中的重要作用 由于的车牌定位功能不止是车牌识别的基础,对于污损严重的车牌也一样需要利用定位出的车牌进行车牌亮度分析和车牌图像匹配。当车牌亮度不合适时,车牌可能过亮或过暗,需要正确定位车牌才能根据车牌的亮度迅速调整摄像机;当车牌污损,无法识别时,更需要进行正确的车牌定位,以进行车牌图像匹配。具体而言,以下特殊情况是的车牌定位算法必须解决的问题: (1) 不完整车牌的定位。当车牌被遮挡,或车牌文字缺损时,需要能正确定位车牌,不能因为车牌宽度、高度不满足车牌条件而无法定位或定位错误。 (2) 双层车牌的定位。双层车牌的精定位需要完整定位出车牌的上下两层。这一任务可以在车牌定位过程中实现,也可在进行字符分割及识别的过程中实现。 (3) 车辆前端复杂情况下车牌的定位。某些车辆的前端进气口、保险杠形状复杂,有可能干扰车牌的定位过程,车牌定位算法需要对其有足够的抗扰能力。 (4) 港澳车辆的大陆车牌的定位。所有港澳车辆均有大陆和港澳两个车牌,定位过程(可能结合字符分割识别过程)需要最终确定和选择大陆车牌作为识别目标。需要注意的是,老标准中的大陆车牌为双层车牌,新标准中的大陆车牌为末尾为“港”或“澳”的单层车牌。 (5) 非车牌文字为车牌定位的干扰。车牌定位算法需要正确区分车牌和无关的文字、标牌。车辆上的文字和标牌主要包括:营运标牌、危险品标牌、出租车标牌、政府机构标牌、广告标牌、礼貌行车标语等等。此外,车辆本身商标的文字和图形也需与车牌进行正确的区别。 (6) 笔划不全车牌的定位。某些车牌经过常年使用,或者车牌制作质量不良,可能导致车牌油漆脱落,导致车牌图像笔划不全,模糊不请。这样的车牌无法进行车牌识别,因此需要进行正确定位,以进行车牌图像匹配。 (7) 污损车牌的定位。污损车牌依据其污损程度的不同,可能进行识别、部分识别或完全拒识,在某些实际应用中,需要定位正确以进行车牌图像匹配。 (8) 拍摄亮度不合适车牌的定位。当摄像机拍摄亮度不合适时,车牌可能非常不清晰,车牌过亮甚至可能导致整个车牌完全一片白。这时的车牌定位正确对进行车牌亮度反馈,控制摄像机拍摄具有重要意义。
表1 特殊情况下车牌的定位
车牌定位算法一般有两个基本思路,一是以车牌的特征作为在图片中搜索的依据;二是以文字特征作为在图片中搜索的依据。算法把二者进行了充分的结合,在扫描一遍图片的过程中同时实现了车牌的特征分析和文字分析,最终定位出车牌,从而具有很高的性能。 2 )车牌字符分割算法车牌字符分割算法把车牌中的字符分割开以分别进行识别,是车牌识别的重要一环。车牌字符分割算法面临两个挑战,一是中国车牌格式较多,因此车牌字符分割算法需要能处理多种车牌格式;二是对于字符粘连,污损情况也需进行正确的分割。 中国大陆的车牌格式主要包括以下几种: (1) 普通车牌 (2) 双层车牌。中国目前的双层车牌包括农用和建设用车的双层车牌、大型车辆后面的双层车牌等四种 (3) 警车车牌。中国的警车车牌格式与普通车牌略有不同,其文字的间距分布也略有差异,其最后为汉字“警”。 (4) 武警车牌。武警车辆的车牌字符较多,字体与通常车牌不同,在其车牌中间可能有汉字出现,一般包括:消、金、林、通、警、边、电等。 (5) 2002式个性化车牌 (6) 新版港澳车牌。与警车相似,只是最后汉字为“港”或“澳”。 (7) 军车,包括单层和双层车牌。 (8) 使馆、领事馆车牌。 (9) 摩托车牌 (10) 新农机车牌
表2 中国大陆车牌类型
字符分割的目的是把字符单独定位出来,当字符本身由于污点、车牌边框、固定螺丝等原因彼此或与车牌边框粘连时,字符分割算法需要对其进行特殊处理。 一般而言,影响车牌字符分割的特殊情况主要有以下几种: (1) 字符由于污损彼此粘连。某些车牌还会用铁丝、橡皮圈固定,导致所有车牌字符均粘连在一起,影响分割。 (2) 带红字的车牌。军警车辆等车牌中带有红字,一般红字拍摄较亮,甚至导致字符某些笔划不全,在字符分割时需要进行考虑。 (3) 武警车牌中WJ字符在垂直方向上彼此重叠,对于某些依据投影进行字符分割的算法有一定影响。 (4) 字符与车牌边框粘连。现在很多车辆的车牌四周用一有装饰作用的边框固定和保护,有时会把所有字符均粘连在一起。某些车辆的保险杠也会导致字符粘连,严重情况下会遮蔽一半以上的车牌字符。 (5) 字符与固定车牌的螺丝钉粘连。车牌的固定螺钉可能与黑字的车牌字符发生粘连,需要分割时加以处理。 (6) 由于污损车牌字符残缺不全。 (7) 某些军车车牌为油漆直接漆在车辆上的假牌,其字符一般由于掩模原因由多个部分构成,具有一定的切分难度。 (8) 有不均匀阴影的车牌。 (9) 倾斜车牌。车牌的倾斜可能在水平和垂直两个方向上发生,字符切分算法最好能处理两个方向上的倾斜。一般来说,对于固定位置的车牌识别系统应用,算法主要处理车牌整体的水平倾斜即可满足应用需要。对于移动式车牌识别系统的应用,需要处理两个方向上的倾斜。
表3 车牌字符分割算法需要处理的特殊情况
字符分割算法一般有两个基本思路,一是以二值化后的车牌图像为基础进行分割;二是以车牌的灰度图像为基础进行分割;三是以车牌的彩色图像为基础。第一种思路性能首先依赖于车牌二值化算法的性能,一般需要采用自适应的可变域值二值化算法;第二种思路可以充分利用车牌字符和背景的灰度差别,一般可以获得更好的切割效果;第三种思路一般在前两个算法的基础上,结合车牌的彩色信息进行字符分割。 由于采集的是灰度图像,因此的字符切割算法以灰度图像为基础,充分利用字符和背景间的灰度变化信息,对粘连字符的分割综合车牌字符的几何位置关系和灰度变化进行综合的判断。 的字符分割算法具有较好的性能,但在处理字符与边框的粘连情况、车牌字符的垂直倾斜等方面还可进一步改进和提高。 3 )车牌字符识别算法车牌字符识别算法是光学字符识别的一个应用,由于车牌图像的采集方式和易受污损的实际情况,与一般的光学字符识别应用略有差别,主要体现在以下几点: (1) 一般车牌识别系统采用CCD摄像机采集车辆图片,因此车牌字符的分辨率不会很高。一般检测一个车道的车牌识别系统,每个车牌字符大约为14×35(宽度×高度)大小,对于英文字母和数字的识别是足够的,但对于汉字的识别像素数相对较少。 (2) 由于一般的CCD芯片输出的是隔行的视频信号,因此在车辆高度通过的应用场合,两场之间车辆会行驶较大距离,导致只能采用一场图像进行识别,相当于字符的像素分辨率在高度上降低一半,只有7×35像素大小,更增加了识别困难。 (3) 由于车牌是室外标牌,容易受到污损,严重影响识别率。 (4) 车牌的拍摄效果无法达到扫描仪的效果,拍摄亮度的变化也会严重影响车牌字符的拍摄效果,笔划粗细可能有较大变化。 (5) 车牌的悬挂倾斜无法控制,因此对车牌字符的倾斜也需进行专门考虑。 (6) 由于笔划相对较宽,对于笔划较多的汉字很难进行效果良好的二值化,二值化后容易模糊一片,难以识别。
针对车牌识别系统的具体情况和要求,的字符识别算法对以下情况专门作了算法优化设计: (1) 算法对字符笔划宽度变化由很强的适应性。 (2) 算法对字符的垂直倾斜具有很强的适应性。 (3) 算法对D和0、A和4、S和5具有较强的区分能力。
由于汉字的像素分辨率相对不够、某些汉字笔划复杂(如渝、赣、藏等)、拍摄效果难以保证汉字的清晰程度,因此汉字的识别受到实际情况的极大限制。为进一步提高汉字的识别效果,识别算法采用了两个识别核心,分别针对拍摄清晰的汉字和拍摄模糊的汉字进行识别。 |