- 博客(393)
- 资源 (3)
- 收藏
- 关注
原创 戴口罩人脸识别、高精度人脸识别算法
1.数据集的整理及清洗1. 线上数据40万人,2000万张图2. glint360,36万人,2000多万张图2.人脸预处理----采用自研的图像处理算法对人脸进行 "中心矫正" 较小冗余信息,增加人脸纹理识别信息。----采用自研的图像处理算法对图像 "归一化处理” ,使得算法模型可以在不同环境、不同光照、部分遮挡下正常运行。----采用传统算法 给人脸加口罩,眼镜等额外特征,提升算法对戴口罩人员的识别能力3.深度神经网络构建----采用前沿的"深度神经网络"及最新框架对人脸
2022-04-14 12:16:18 8954 2
原创 安防监控、智慧交通 视频结构化(车辆+行人)实现方案
目前视频结构化已经应用到安防监控中,主要是对视频中的人员、车辆目标进行结构化处理,能够提取出人员的年龄、性别、衣服颜色、是否戴眼镜等属性信息,车辆的车牌号码、车型、车辆颜色、挂件等属性信息。基于提取的属性信息可以进行人员、车辆的进一步比对分析,确定违法犯罪人员和违法车辆。在平安城市、智慧城市等的火热建设下,视频监控和视频应用的需求在不断增加,视频监控行业市场规模保持快速增长。庞大的监控视频数据加大了安防运维成本。如公共安全监控中主要关注的视频信息为:人员、车辆、行为。而传统视频监控中,如需.
2021-09-25 17:34:16 3065 1
原创 人体检测算法,人流量统计,闯入分析
人体检测算法,人流量统计,人头计数应用环境:ARM 边缘设备、PC服务器设备人头检测在安防监控中是比较常用的功能,而公交车、商场或者大型场馆的拥挤人群计数的精准性也非常重要。算法思想作者称拥挤人群计数目前主要有两种实现路径:1.使用回归的算法思路,直接根据图像回归出拥挤人群密度热图,它的缺点是只能得到场景整体的一个拥挤指数,不能获知人群个体的具体位置,而且这种方法对图像分辨率很敏感。(52CV君曾经分享过:尺度不变网络提升人群计数性能(附Github地址))2.使用目标检测的方法,比
2021-06-17 13:44:58 3767 1
原创 基于Arm的 多目标跟踪算法 Deepsort
目前基于边缘设备arm优化了下多目标跟踪算法deepsort,该算法在RK3399上面同时跟踪20个目标的耗时可以做到5ms左右,真正的实时多目标跟踪。目前多目标跟踪算法已经应用在Arm边缘设备用来做人流量统计算法 和车流量统计算法。感兴趣联系547691062@qq.com...
2021-05-06 22:40:32 3089 1
原创 基于深度学习车牌识别方案
支持车牌种类蓝色单层车牌 黄色单层车牌 绿色新能源车牌、民航车牌 黑色单层车牌 白色警牌、军牌、武警车牌 黄色双层车牌 绿色农用车牌 白色双层军牌
2021-04-02 11:15:57 1305 2
原创 人脸识别/戴口罩人脸识别 快速实现部署系统方案(Linux / Android)
人脸识别模型产出过程及部署1.数据集的整理及清洗----使用公司自研 "聚类算法" 整理和清洗目前最大的两个人脸数据集MegaFace 与 微软亚洲数据集 同时结合公司内部数据整理出图片共计2000万张左右。----与铁路部合作整理人证数据集 50万个身份 用以提升人证比对效果。2.人脸预处理----采用自研的图像处理算法对人脸进行 "中心矫正" 较小冗余信息,增加人脸纹理识别信息...
2020-12-31 14:33:08 3852
原创 人头检测算法,人流量统计,人头计数,人员聚集分析,人脸测温
人头检测算法,人流量统计,人头计数人头检测在安防监控中是比较常用的功能,而公交车、商场或者大型场馆的拥挤人群计数的精准性也非常重要。算法思想作者称拥挤人群计数目前主要有两种实现路径:1.使用回归的算法思路,直接根据图像回归出拥挤人群密度热图,它的缺点是只能得到场景整体的一个拥挤指数,不能获知人群个体的具体位置,而且这种方法对图像分辨率很敏感。(52CV君曾经分享过:尺度不变网络提升人群计数性能(附Github地址))2.使用目标检测的方法,比如直接使用Faster RCNN检测人,检测后
2020-10-19 15:53:42 11108 4
原创 车流量计数、不同车型统计算法
车流量计数统计算法是目前安防领域重要的应用方向,根据实时或历史视频流,实时统计不同类型的车流量比如:小客车,客货两用车,出租车,公交车,中客车,大客车,小货车 等类别的个数实时统计算法目前的实现为:多目标检测+多目标跟踪目前测试【检测+跟踪】算法可以在 2080Ti上面每秒处理200帧-300帧历史视频数据算法已经移植到C++版本,运行性能很高。547691062@qq.com...
2020-10-19 15:40:47 8561 2
原创 高速人脸检测+嵌入式CPU部署 或Android库
目前优化了一款高速人脸检测算法,在 ARM设备的A73单核CPU(图像大小:860*540最小人脸大小:60*60)速度可以高达10-15ms每帧,真正的实时人脸检测算法,算法准确率在 FDDB数据集与MTCNN算法的准确率相当,可以应用将该算法部署在边缘设备,进行人脸识别算法进行整体算法提速。上图展示了 算法 在 A73 CPU上面的运行时间, 人脸检测部分一般在 10ms-15ms 左右 ,人脸检测+人脸特征提取 一般在 130-135ms,整体识别速度非常快速。需要改进人脸识别算法的欢..
2020-07-15 15:11:03 2284
原创 安防监控、智慧交通 视频结构化(车辆+行人)实现方案
目前视频结构化已经应用到安防监控中,主要是对视频中的人员、车辆目标进行结构化处理,能够提取出人员的年龄、性别、衣服颜色、是否戴眼镜等属性信息,车辆的车牌号码、车型、车辆颜色、挂件等属性信息。基于提取的属性信息可以进行人员、车辆的进一步比对分析,确定违法犯罪人员和违法车辆。在平安城市、智慧城市等的火热建设下,视频监控和视频应用的需求在不断增加,视频监控行业市场规模保持快速增长。庞大...
2020-04-03 16:37:20 6731 2
原创 数学笔记
1.泰勒展开和傅里叶变换的区别与联系不妨先想想平面向量的正交分解.傅里叶变换是函数在三角函数空间span{1,cosx,sinx,cos2x,sin2x,……}下的分解,各项系数就是在各个分量上的投影.Taylor级数则是在多项式空间span{1,x,x^2,……}下的分解....
2019-08-22 09:42:37 226
原创 深度学习-笔记
如何解决训练样本少的问题目前大部分的深度学习模型仍然需要海量的数据支持。例如 ImageNet 数据就拥有1400多万的图片。而现实生产环境中,数据集通常较小,只有几万甚至几百个样本。这时候,如何在这种情况下应用深度学习呢?(1)利用预训练模型进行迁移微调(fine-tuning),预训练模型通常在特征上拥有很好的语义表达。此时,只需将模型在小数据集上进行微调就能取得不错的效果。这也是目前大...
2019-08-08 16:39:52 929
原创 算法学习
目标跟踪https://blog.csdn.net/sgfmby1994/article/category/6392953 https://blog.csdn.net/androidlushangderen/article/category/2458855
2018-10-24 17:19:02 241
原创 技术综述流程
1. 基于较新的几篇sort论文进行 数据集情况介绍。3. start of art 论文对比的一些方案。2. 基本的实现方法介绍,实现方案的演变流程。5.主流实现方案介绍。
2024-09-09 09:40:14 368
原创 MD hog 实现移动侦测
帧的 HOG 特征图 ,这里假如 hog_block=16*16, hog_cell=8*8 , block的步长为8, 那么 每个 8*8的cell 会有 9个特征值(此时获取的 hog feature map 维度为 w=(640-8)/8, h = (360-8)/8,帧的 hog feature map 在 c (36个数值的向量)维度 做距离计算, 大于一定距离的认为是移动的特征点;帧的 HOG 特征图可复用之前的计算结果减少hog运算);3.对比帧选择,假如当前帧号为 N, 使用第(
2024-05-06 17:36:01 308 1
原创 多机多卡训练
a. 需要写代码的时候支持多机多卡,这个openmmlab系列的代码默认是支持的。如果是自己新实现的代码,一般多卡可以用,那么多机多卡也可以用。3. 环境:参考2数据放置的方法(注意这里的环境不仅包括conda环境,还包含各种环境变量,cuda,cudnn等)4. 使用:假设有2台机器,机器1的IP:192.168.28.71,机器2的IP:192.168.28.72。c. 最好保持不同机器的代码放在同一个路径下,可以放在共享目录,也可以放在不同机器的相同绝对路径。参考1.c的放置方法。
2024-03-26 10:35:22 320
原创 模型部署——RKNN模型量化精度分析及混合量化提高精度
3.1 量化精度分析流程计算不同情况下,同一层网络输入值的余弦距离,来近似的查看每一层精度损失的情况。具体量化精度分析的流程如下:3.2 量化精度分析accuracy_analysis接口量化精度分析调用accuracy_analysis接口,推理并产生快照,也就是dump出每一层的tensor数据。会dump出包括fp32和quant两种数据类型的快照,用于计算量化误差。该接口使用的量化方式与config_中指定的一致。
2024-03-20 16:02:34 1156
原创 行人重识别
行人重识别(Person Re-identification也称行人再识别,简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术;或者说,行人重识别是指在已有的可能来源与非重叠摄像机视域的视频序列中识别出目标行人。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术。
2024-02-19 11:12:41 1936
原创 查找局域网IP方法
2.ARP指令可以显示交换机高速缓存中存储的IP地址和MAC地址映射表,但由于ARP高速缓存中存储的是最近使用过的IP地址,所以此方法只能找到近期活跃的主机IP地址,并不能保证找到局域网内所有的IP地址。192.168.100.32 16-6a-8f-51-d0-99 动态。4. 记住IP对应的Mac,下次可以直接通过arp -a 看对应的mac地址来对应啦。3.进行两次分别拔掉网线,插入网线查看结果差异就能大概知道IP了。1.向路由器ping地址,让路由器记录所有IP;
2024-01-24 10:49:10 1206
原创 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)
https://www.cnblogs.com/polly333/p/7280764.htmlhttps://www.cnblogs.com/polly333/p/7280764.htmlhttps://www.cnblogs.com/polly333/p/7280764.html一、图像增强算法原理 图像增强算法常见于对图像的亮度、对比度、饱和度、色调等进行...
2023-05-29 14:03:32 1998
原创 2D与3D人脸识别有什么本质上的区别?
作者:枫枫链接:https://www.zhihu.com/question/324123433/answer/681365180来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。人脸是人体最重要的生物特征之一,而人脸研究主要集中在人脸识别方面,人脸的表达模型分为2D人脸和3D人脸。2D人脸识别研究的时间相对较长,方法流程也相对成熟,在多个领域都有使用,但...
2023-05-29 14:02:58 806
原创 目标检测-识别提升方法记录
7.场景下得同类目标容易引起误检,比如做人形检测,跟人相关得目标,沙发、宠物、交通工具等跟人交互较多得目标很容易被误检,针对这种样本要针对性增加作为负样本来减少误检。3.搜索特定类别的误检样本作为纯负样本,同时也可基于常出现的误检增加一个检测类别来减少该类别的误检,带来的副作用是定位误差,重复检测误差变大,map可能会降低。(如部署时也增加小目标过滤,则无此影响)2. 添加纯负样本(检测base模型,检测分数大于0.05的误检),加入训练,有效减少误检 , 副作用是只添加纯负样本map可能会少许降低。
2023-05-15 09:44:53 747 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人