蓝桥杯2014年第五届真题-地宫取宝

题目描述

X  国王有一个地宫宝库。是  n  x  m  个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。

输入格式

输入一行3个整数,用空格分开:n  m  k  (1< =n,m< =50,  1< =k< =12) 
接下来有  n  行数据,每行有  m  个整数  Ci  (0< =Ci< =12)代表这个格子上的宝物的价值 

输出格式

要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对  1000000007  取模的结果。

样例输入

2 3 2
1 2 3
2 1 5

样例输出

14

解题思路

设d[i][j][k][c]为走到(i,j)的时候,手上共K个物品,最大价值小于c

    则d[i][j][k][c]转移方程是

              当前拿这个物品: s1= d[i-1][j][k-1][ w[i][j] ](从上边继承)+d[i][j-1][k-1][ w[i][j] ](从左边继承)

                     当前可以拿这个物品的条件是(c>a[i][j]&&k>0);

              当前不拿物品   : s2= d[i-1][j][k][c](从上边继承)+d[i][j-1][k][c](从左边继承)

               综合 d[i][j][k][c]= (s1+s2)%mod;

    最大时间复杂度O(T)=O(i*j*k*c)=O(50*50*13*13)=O(422500) 

本题AC时间:6ms

注意事项

    初始化(i==0||j==0)的时候d[i][j][k][c]=0;

    临界条件(i==1&&j==1)当k!=0或者 k==1且c>a[i][j]的时候设置为1,其他时候0;

    答案是d[n][m][k][12]

参考代码

#include <iostream>
 
#define _for(i,a,b) for(int i=a;i<b;i++)
 
using namespace std;
typedef long long LL;
LL d[51][51][13][13],mod=1000000007;
int a[55][55];
int main() {
    int n,m,K;
    cin>>n>>m>>K;
    _for(i,0,n)_for(j,0,m)cin>>a[i+1][j+1];
    _for(i,1,n+1)_for(j,1,m+1)_for(k,0,K+1)_for(c,0,13){
        LL na=0,buna=0;
        if(i==1&&j==1){
            if(!k||(k==1&&c>a[i][j]))d[i][j][k][c]=1;
            continue;
        }
        if(k&&c>a[i][j])na=d[i-1][j][k-1][a[i][j]]+d[i][j-1][k-1][a[i][j]];
        buna=d[i-1][j][k][c]+d[i][j-1][k][c];
        d[i][j][k][c]=na+buna;
        d[i][j][k][c]%=mod;
    }
    cout<<d[n][m][K][12]<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于建章

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值