题目描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1< =n,m< =50, 1< =k< =12)
接下来有 n 行数据,每行有 m 个整数 Ci (0< =Ci< =12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 3 2 1 2 3 2 1 5
样例输出
14
解题思路
设d[i][j][k][c]为走到(i,j)的时候,手上共K个物品,最大价值小于c
则d[i][j][k][c]转移方程是
当前拿这个物品: s1= d[i-1][j][k-1][ w[i][j] ](从上边继承)+d[i][j-1][k-1][ w[i][j] ](从左边继承)
当前可以拿这个物品的条件是(c>a[i][j]&&k>0);
当前不拿物品 : s2= d[i-1][j][k][c](从上边继承)+d[i][j-1][k][c](从左边继承)
综合 d[i][j][k][c]= (s1+s2)%mod;
最大时间复杂度O(T)=O(i*j*k*c)=O(50*50*13*13)=O(422500)
本题AC时间:6ms
注意事项
初始化(i==0||j==0)的时候d[i][j][k][c]=0;
临界条件(i==1&&j==1)当k!=0或者 k==1且c>a[i][j]的时候设置为1,其他时候0;
答案是d[n][m][k][12]
参考代码
#include <iostream>
#define _for(i,a,b) for(int i=a;i<b;i++)
using namespace std;
typedef long long LL;
LL d[51][51][13][13],mod=1000000007;
int a[55][55];
int main() {
int n,m,K;
cin>>n>>m>>K;
_for(i,0,n)_for(j,0,m)cin>>a[i+1][j+1];
_for(i,1,n+1)_for(j,1,m+1)_for(k,0,K+1)_for(c,0,13){
LL na=0,buna=0;
if(i==1&&j==1){
if(!k||(k==1&&c>a[i][j]))d[i][j][k][c]=1;
continue;
}
if(k&&c>a[i][j])na=d[i-1][j][k-1][a[i][j]]+d[i][j-1][k-1][a[i][j]];
buna=d[i-1][j][k][c]+d[i][j-1][k][c];
d[i][j][k][c]=na+buna;
d[i][j][k][c]%=mod;
}
cout<<d[n][m][K][12]<<endl;
}