pku 1511 - invitation cards (spfa)

http://acm.pku.edu.cn/JudgeOnline/problem?id=1511

题目描述:求出顶点1到其它n-1个点的最短往返路径长度和!

路径的往返要分开处理。

1:对于“往”,只需对输入数据,构建邻接表,调用spfa函数求最短路径。

2:对于“返”,对输入数据的边进行反向构建邻接表。再对顶点1求最短路径,即可求出返的最短路径和!

由于数据太BT,顶点数达到1000000,构建邻接矩阵肯定不行。用vector建立邻接表超时了,所以不得不使用正向表。

附spfa算法简介:

SPFA

  求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm

  SPFA算法是西南交通大学段凡丁于1994年发表的.

  从名字我们就可以看出,这种算法在效率上一定有过人之处。

  很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。

  简洁起见,我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点。

  我们用数组d记录每个结点的最短路径估计值,而且用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。

  定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。

  证明:每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)

  期望的时间复杂度O(ke) 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2

)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值