坐标下降法(Coordinate descent)

坐标下降法属于一种非梯度优化的方法,它在每步迭代中沿一个坐标的方向进行搜索,通过循环使用不同的坐标方法来达到目标函数的局部极小值

相当于每次迭代都只是更新x的一个维度,即把该维度当做变量,剩下的n-1个维度当作常量,通过最小化f(x)来找到该维度对应的新的值。坐标下降法就是通过迭代地构造序列x0,x1,x2,…

来求解问题,即最终点收敛到期望的局部极小值点。通过上述操作,显然有:

                                             f(x0)≥f(x1)≥f(x2)≥…

相比梯度下降法而言,坐标下降法不需要计算目标函数的梯度,在每步迭代中仅需求解一维搜索问题,所以对于某些复杂的问题计算较为简便。但如果目标函数不光滑的话,坐标下降法可能会陷入非驻点。

注意事项

关于坐标下降法,有几点需要注意的:

1.坐标下降的顺序是任意的,不一定非得按照从x1…xn的顺序来,可以是从1到n的任意排列。

2.坐标下降的关键在于一次一个地更新,所有的一起更新有可能会导致不收敛。

3.坐标上升法和坐标下降法的本质一样,只不过目标函数成为求f(x)的极大值了,每次迭代过程min变成max了。

首先介绍一个算法:coordinate-wise minimization

问题的描述:给定一个可微的凸函数,如果在某一点x,使得f(x)在每一个坐标轴上都是最小值,那么f(x)是不是一个全局的最小值。

形式化的描述为:是不是对于所有的d,i都有

这里的代表第i个标准基向量。

答案为成立。

这是因为:

但是问题来了,如果对于凸函数f,若不可微该会怎样呢?

答案为不成立,上面的图片就给出了一个反例。

那么同样的问题,现在,其中g是可微的凸函数,每一个hi都是凸的?

答案为成立。

证明如下,对每一个y

 

坐标下降(Coordinate descent):

这就意味着,对所有的,其中g是可微的凸函数,每一个hi都是凸的,我们可以使用坐标下降寻求一个最小值,我们从一个最初的猜想开始,对k进行循环:

每一次我们解决了,我们都会使用新的值。

Tseng (2001)的开创性工作证明:对这种f(f在紧集上连续,且f到达了其最小值),的极限值,k=1,2,3….是f的一个最小元(minimizer)。

在实分析领域:

随后收敛与x*( Bolzano-Weierstrass)

收敛于f*( monotoneconvergence)

其中:

坐标下降的顺序是任意的,可以是从1到n的任意排列。

可以在任何地方将单个的坐标替代成坐标块

关键在于一次一个地更新,所有的一起更新有可能会导致不收敛

 

我们现在讨论一下坐标下降的应用:

线性回归:

 

,其中,A有p列:

最小化xi,对所有的xj,j不等于i:

解得:

坐标下降重复这个更新对所有的

对比坐标下降与梯度下降在线性回归中的表现(100个实例,n=100,p=20)

将坐标下降的一圈与梯度下降的一次迭代对比是不是公平呢?是的。

其中r=y-Ax。每一次的坐标更新需要O(n)个操作,其中O(n)去更新r,O(n)去计算,所以一圈就需要O(np),跟梯度下降是一样的。

我们用相同的例子,用梯度下降进行比较,似乎是与计算梯度下降的最优性相违背。

那么坐标下降是一个一阶的方法吗?事实上不是,它使用了比一阶更多的信息。

 

现在我们再关注一下支持向量机:

SVM对偶中的坐标下降策略:

SMO(Sequentialminimal optimization)算法是两块的坐标下降,使用贪心法选择下一块,而不是用循环。

回调互补松弛条件(complementaryslackness conditions):

v,d,s是原始的系数,截距和松弛,其中,使用任何的(1)中i使得来计算d,利用(1)(2)来计算2.

v,d,s是原始的系数,截距和松弛,其中,使用任何的(1)中i使得来计算d,利用(1)(2)来计算2.

SMO重复下面两步:

选出不满足互补松弛的αi,αj

最小化αi,αj使所有的变量满足条件


第一步使用启发式的方法贪心得寻找αi,αj,第二步使用等式约束。
---------------------
作者:花折泪
来源:CSDN
原文:https://blog.csdn.net/u013802188/article/details/40476989
版权声明:本文为博主原创文章,转载请附上博文链接!

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用R语言实现的循环坐标下降coordinate descent)求解Lasso的代码: ``` # Lasso using coordinate descent # Define the L1 penalty function L1 <- function(beta, lambda) { sum(abs(beta)) * lambda } # Define the coordinate descent function lasso_cd <- function(X, y, lambda, max_iter = 1000, tol = 1e-4) { # Standardize X and y X <- scale(X) y <- scale(y) # Initialize beta n <- nrow(X) p <- ncol(X) beta <- rep(0, p) beta_old <- beta # Define the soft-thresholding operator soft_thresh <- function(x, lambda) { sign(x) * pmax(abs(x) - lambda, 0) } # Coordinate descent loop for (iter in 1:max_iter) { for (j in 1:p) { X_j <- X[, j] beta_j <- beta[-j] r <- y - X[, -j] %*% beta_j c_j <- colSums(X_j^2) z_j <- X_j %*% r / n + beta[j] beta[j] <- soft_thresh(z_j, lambda * n) / c_j } if (max(abs(beta - beta_old)) < tol) { break } beta_old <- beta } # Return the final beta values beta } # Example usage set.seed(123) n <- 100 p <- 10 X <- matrix(rnorm(n * p), n, p) y <- X[, 1] - 2 * X[, 2] + rnorm(n) lambda <- 0.5 beta <- lasso_cd(X, y, lambda) ``` 其中,第一步定义了L1惩罚函数(L1 penalty function),第二步是循环坐标下降coordinate descent)函数的定义,第三步是对输入的数据进行标准化,第四步是初始化beta。在coordinate descent循环中,我们对于每个j循环遍历每个参数,计算残差r,第j个自变量的列和c_j,z_j,然后更新beta_j。最后,我们检查beta是否收敛,并返回最终的beta值。 这个函数可以接受任意大小的X和y,以及任意的lambda值,它返回Lasso估计的系数向量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值