YOLOv4

        YOLOv4 是一种先进的目标检测算法,属于 YOLO(You Only Look Once)系列的第四代版本。它在保持了 YOLO 系列算法速度优势的同时,显著提升了检测精度。

数据增强

        Bag of freebies 指的是那些不增加模型复杂度,也不增加推理的计算量,通过改进模型和数据的预处理,来提高模型的准确度。

Bag of freebies(BOF)只增加训练成本,但是能显著提高精度,并不影响推理速度
数据增强:调整亮度、对比度、色调、随机缩放、剪切、翻转、旋转
网络正则化的方法:Dropout、Dropblock等
类别不平衡,损失函数设计

CutMix 数据增强

原理:将一张图像的部分区域裁剪下来,并粘贴到另一张图像上,同时调整标签。

与 Mosaic 的区别:CutMix 只融合两张图像,且裁剪区域通常更大。

作用:增强模型对遮挡目标的鲁棒性

方法很简单,参考CutMix然后四张图像拼接成一张进行训练

数据增强—常规几何变换

        随机缩放、旋转、平移:改变目标的大小和位置,增加检测难度。使用仿射变换实现,保持目标的几何关系。
        水平 / 垂直翻转:增强模型对目标方向的不变性。

数据增强—颜色空间变换

        亮度、对比度、饱和度、色调调整:随机调整图像的颜色属性,模拟不同光照条件。

        高斯噪声、椒盐噪声:增加图像的噪声鲁棒性。

DropBlock

        DropBlock是谷歌在2018年提出的一种用于卷积神经网络(CNN)的正则化方法。这是一种用于解决过拟合问题的技术,在训练神经网络时非常有用。过拟合问题是指在训练集上表现很好,但在测试集上表现不佳的问题。

        相比于传统的Dropout技术,DropBlock不是随机屏蔽掉一部分特征(注意是对特征图进行屏蔽),而是随机屏蔽掉多个部分连续的区域。这种方法有助于减少神经网络中的冗余连接,从而提高模型的泛化能力。

标签平滑

        神经网络最大的缺点:自觉不错(过拟合),让它别太自信

        例如原来标签为(0,1):[0,1]x(1-0.1)+ 0.1/2 =[0.05,0.95]

损失函数的改进

损失函数的改进GIOU

损失函数DIOU

损失函数的改进CIOU

非极大值抑制的改进

传统的NMS存在一定的问题:如果一个物体在另一个物体重叠区域出现,即当两个目标框接近时,分数更低的框就会因为与之重叠面积过大而被删掉,从而导致对该物体的检测失败并降低了算法的平均检测率。

将当前检测框得分乘以一个权重函数,该函数会衰减与最高得分检测框M有重叠的相邻检测框的分数,越是与M框高度重叠的检测框,其得分衰减越严重,为此选择高斯函数为权重函数,从而修改其删除检测框的规则。(δ通常取0.3)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值