二叉树中求根节点到每个叶子结点的路径

本文介绍了一种算法,用于求解二叉树中从根节点到每个叶子节点的路径。通过递归方法,该算法能够有效地遍历二叉树,并打印出所有从根到叶的路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/**
*2018.10.25 21:32
*二叉树中求根节点到每个叶子结点的路径
*/
#include<stdio.h>

#define MAX 100

typedef char Elem;

typedef struct BTNode{
	Elem e;
	struct BTNode* lchild;
	struct BTNode* rchild;
}BTNode;


void rootToLeafPath(BTNode* T);

int main(void) {
	
	
	putchar('\n');
	system("pause");
	return 0;
}


Elem path[MAX], top = -1;

void rootToLeafPath(BTNode* T) {
	if (T != NULL) {
		path[++top] = T->e;
		if (T->lchild == NULL && T->rchild == NULL) {
			//从根到叶
			for (int i = 0; i <= top; ++i) 
				printf("%c", path[i]);
			
			/*从叶到根
			int i = top;
			while (i > -1) {
				printf("%c", path[i]);
				--i;
			}*/
		}
		rootToLeafPath(T->lchild);
		rootToLeafPath(T->rchild);
		--top;
	}
}
### 回答1: 可以使用递归的方式输出二叉树每个叶子结点到根节点路径。具体步骤如下: 1. 定义一个递归函数,传入当前节点和一个空列表,表示当前节点到根节点路径。 2. 如果当前节点为空,直接返回。 3. 如果当前节点是叶子节点,将当前节点的值加入路径列表中,并输出路径列表。 4. 如果当前节点不是叶子节点,将当前节点的值加入路径列表中,然后递归遍历左子树和右子树,分别将左子树和右子树的路径列表加入当前路径列表中。 5. 遍历完左右子树后,将当前节点路径列表中删除,返回上一层递归。 下面是示例代码: ```python class TreeNode: def __init__(self, val=, left=None, right=None): self.val = val self.left = left self.right = right def print_paths(root): if not root: return path = [] print_paths_helper(root, path) def print_paths_helper(node, path): if not node: return path.append(node.val) if not node.left and not node.right: print(path[::-1]) print_paths_helper(node.left, path) print_paths_helper(node.right, path) path.pop() ``` 调用 `print_paths(root)` 即可输出二叉树每个叶子结点到根节点路径。 ### 回答2: 二叉树每个叶子结点到根节点路径可以通过深度优先搜索(DFS)来实现。对于每个叶子结点,我们可以通过递归遍历的方式,从当前叶子结点一直向上寻找其根节点,直到找到根节点为止。在进行遍历的过程中,我们需要记录每个节点的父节点,以便确定节点路径。 具体实现步骤如下: 1. 定义一个变量path来存储当前节点路径,初始值为空。 2. 如果当前节点是叶子节点,将其路径添加到结果列表中,然后返回。 3. 如果当前节点不是叶子节点,分别递归遍历其左子树和右子树,每次递归结束后,将对应节点的信息(包括父节点路径)从栈中弹出。 4. 最后将当前节点路径添加到上一级节点路径中,返回上一级节点。 代码实现如下: ``` class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def binaryTreePaths(self, root: TreeNode) -> List[str]: if not root: return [] # 定义结果列表 res = [] # 定义栈,用于存储节点和对应的路径 stack = [(root, str(root.val))] while stack: # 弹出栈顶元素 node, path = stack.pop() if not node.left and not node.right: # 如果当前节点是叶子节点,将路径添加到结果列表中 res.append(path) if node.right: # 如果存在右子树,将右子树压入栈中 stack.append((node.right, path + "->" + str(node.right.val))) if node.left: # 如果存在左子树,将左子树压入栈中 stack.append((node.left, path + "->" + str(node.left.val))) return res ``` 以上便是输出二叉树每个叶子结点到根节点路径的具体实现方法。 ### 回答3: 在二叉树中,叶子结点是指没有子节点节点,根节点是指深度为0的节点。输出每个叶子结点到根节点路径可以采用递归的方式实现,具体步骤如下: 1.定义一个函数,该函数接受一个二叉树节点和一个空列表,该列表用于存储从叶子结点到根节点路径。 2.判断当前节点是否为叶子节点,如果是,则将当前节点的值加入列表中,并输出整个列表,即为从叶子结点到根节点路径。 3.如果当前节点不是叶子节点,则递归调用函数,分别对左子树和右子树进行操作。 4.对左子树进行操作时,将当前节点的值加入列表中,并将列表作为参数传递给左子树的递归调用函数。 5.对右子树进行操作时,将当前节点的值加入列表中,并将列表作为参数传递给右子树的递归调用函数。 6.当左右子树都处理完毕后,将列表中的最后一个元素删除,即为回溯操作,保证每个叶子结点到根节点路径都能被输出。 代码实现如下: ```python # 定义输出路径函数 def print_path(node, path): if not node: return # 判断当前节点是否为叶子节点 if not node.left and not node.right: # 将当前节点的值加入路径 path.append(node.val) # 输出路径 print(path[::-1]) # 将当前节点的值从路径中删除 path.pop() else: # 分别对左右子树进行操作 path.append(node.val) print_path(node.left, path) print_path(node.right, path) path.pop() # 测试代码 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 构造二叉树 root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) # 输出叶子结点到根节点路径 print_path(root, []) ``` 输出结果为: ``` [4, 2, 1] [5, 2, 1] [6, 3, 1] [7, 3, 1] ``` 以上结果表示,从叶子结点4到根节点路径为[4, 2, 1],从叶子结点5到根节点路径为[5, 2, 1],以此类推。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值