- 博客(98)
- 收藏
- 关注
原创 线程池参数如何设定?如何动态调整线程池?
上述在实际生产环境中,根据经验值设定线程池参数的静态配置往往无法满足业务的动态变化需求,因此需要采用。:在 Spring Boot 微服务架构下,通过配置中心动态修改线程池参数。等问题,从而优化线程池的参数配置。策略,以提高系统的吞吐量和稳定性。:复杂业务,基于历史数据预测流量高峰,提前调整线程池大小。在实际生产环境中,监控线程池的运行状态可以帮助我们发现。在生产环境中,线程池的参数不宜固定,而应支持。,以适应不同的业务负载。采集和展示线程池监控数据。中创建仪表盘,查看线程池的。:高并发场景下,结合。
2025-03-25 16:14:07
2479
原创 GO语言的GC(垃圾回收)原理
本文围绕 Go 语言的垃圾回收(GC)机制展开,首先介绍了 GC 的基本概念,包括其自动内存管理的作用、查找可回收对象的可达性分析法,以及 GC Roots 的类型和作用,强调 GC 主要回收堆上对象。接着阐述了 Go GC 的发展历程:Go 1.0 - 1.3 采用标记清除法,标记阶段 STW 影响性能;Go 1.5 引入三色标记法,存在对象丢失问题,通过插入和删除屏障解决;Go 1.8 引入混合写屏障,减少 STW;Go 1.9 及以后从多方面优化,提升了性能和效率。
2025-03-13 17:17:48
1081
原创 垃圾回收GC
垃圾回收(Garbage Collection, GC)是一种自动管理内存的机制,主要用于回收不再使用的对象,防止内存泄漏,并提高程序的稳定性和可维护性。在程序运行过程中,会不断地分配内存来存储各种数据,当这些数据不再被程序使用时,其所占用的内存就变成了“垃圾”。如果不及时回收这些内存,会导致内存泄漏,最终使程序耗尽系统资源而崩溃。垃圾回收机制的主要目的就是自动检测并回收这些不再使用的内存,让开发者无需手动管理内存的分配和释放,从而降低了编程的复杂度,提高了程序的稳定性和可维护性。GC 由运行时系统。
2025-03-13 14:21:30
1050
原创 基于字段的依赖注入、基于 setter 方法的依赖注入以及基于构造函数的依赖注入介绍和用法
基于字段的依赖注入是指直接通过反射机制将依赖对象赋值给目标对象的字段。这种方式简洁直观,不过会降低代码的可测试性,因为无法在不使用反射的情况下为字段赋值。示例代码// 定义一个服务接口// 实现服务接口@Service@Override// 使用基于字段的依赖注入@Component@Autowired代码解释@Autowired注解会让 Spring 框架自动查找合适的实现类,并将其注入到的字段中。在类里,字段被直接注入,无需通过构造函数或者 setter 方法。
2025-03-12 11:24:22
1114
原创 机器学习周志华学习笔记-第1章绪论
正如我们根据过去的经验来判断明天的天气,吃货们希望从购买经验中挑选一个好瓜,那能不能让计算机帮助人类来实现这个呢?机器学习正是这样的一门学科,人的“经验”对应计算机中的“数据”,让计算机来学习这些经验数据,生成一个算法模型,在面对新的情况中,计算机便能作出有效的判断,这便是机器学习。P:计算机程序在某任务类T上的性能。T:计算机程序希望实现的任务类。E:表示经验,即历史的数据集。若该计算机程序通过利用经验E在任务T上获得了性能P的改善,则称该程序对E进行了学习。
2024-11-18 16:20:47
946
原创 机器学习中回归任务、分类任务常用的算法
回归任务:主要包括线性回归、决策树回归、支持向量回归、随机森林和梯度提升回归。适用于连续值预测问题,如房价预测、销售额预测等。特点:回归算法通常基于最小化误差,通过拟合一条最优曲线预测目标值。选择建议:数据量小时首选线性回归;数据量大且复杂时,随机森林和梯度提升是不错的选择。分类任务:包括逻辑回归、K近邻算法、支持向量机、决策树分类、随机森林分类、朴素贝叶斯分类。适用于离散值分类问题,如垃圾邮件识别、图像分类等。特点:分类算法通常通过最大化边界或使用集成方法来提高分类准确率。选择建议。
2024-10-30 10:56:27
2187
原创 无监督学习之聚类
聚类在机器学习中是一个非常重要的工具,能够帮助我们理解数据、改善数据质量、提供个性化服务以及识别潜在问题。无论是在商业、科学还是工程领域,聚类都有着广泛的应用。通过合理的聚类分析,可以为决策提供有力的支持。无监督学习:在没有标签数据的情况下,聚类算法可以自动发现数据中的模式。特征发现:聚类可以帮助识别数据中的重要特征,这些特征可能对后续的监督学习任务有帮助。数据压缩:通过聚类,可以用少量的聚类中心来表示大量的数据点,从而实现数据压缩。决策支持。
2024-10-30 09:51:07
2112
原创 回归、分类模型的评估指标
混淆矩阵是一种表格,用于展示分类模型在各个类别上的正确预测和误分类的数量情况。它能够详细描述分类器的表现,尤其在多分类任务中。
2024-10-24 16:12:53
1313
原创 监督学习之逻辑回归
Py1∣xσz11e−zPy1∣xσz1e−z1Py1∣xP(y=1|xPy1∣x) ) 是给定特征 (xxx) 时,因变量 (yyy) 等于 1 的概率。zβ0zβ0β1x1\beta_1x_1β1x1β2x2β2x2\ldotsβnxnβnxn) 是线性组合。σz\sigma(z)σz) 是 sigmoid 函数,将输出值映射到000。
2024-10-23 20:23:10
1284
原创 监督学习之线性回归
线性回归是机器学习中最基础且广泛使用的回归算法之一,用于预测因变量(目标变量)和一个或多个自变量(特征变量)之间的线性关系。它通过找到一条最佳拟合直线,最小化数据点与直线之间的误差来进行预测。yβ0β1x1β2x2⋯βnxnϵyβ0β1x1β2x2⋯βnxnϵ( y ) 是目标变量(因变量)。x1x_1x1x2x_2x2\dotsxnx_nxn) 是自变量(特征变量)。
2024-10-22 10:52:12
760
原创 机器学习和深度学习常用的工具库
一、机器学习常用库1. Scikit-learn简介:一个基于Python的机器学习库,专注于经典的机器学习算法。特点:提供了多种分类、回归、聚类和降维算法。具有统一的API,便于使用。集成了数据预处理、模型选择和评估等功能。应用:用于教育、数据分析和快速原型开发。2. NumPy简介:用于科学计算的Python库,支持大规模的多维数组和矩阵。特点:提供了许多数学函数来操作数组。高性能,适合进行数值计算。应用:数值计算和数据处理的基础库,常用于机器学习前的数据处理
2024-10-16 15:30:47
815
2
原创 机器学习与深度学习的分类
机器学习和深度学习各有分类和算法,各自适用于不同的问题。机器学习在特定任务上相对简单、易于解释,但在处理复杂模式时可能表现不佳;而深度学习通过复杂的模型能够处理高维数据,但训练成本高且需要大量数据。选择适当的算法和方法,基于具体的应用场景和数据特点,可以更好地实现问题的解决。
2024-10-16 15:09:42
1966
原创 Ubuntu如何给tar.gz文件创建桌面快捷方式
文件是Linux系统中用于定义应用程序启动器的文件格式,它们通常包含图标、名称和执行命令等信息。双击该图标将会1)打开文件管理器并定位到该文件的位置,或2)直接启动脚本,等于启动了软件。为在上一步中选择的名称),对于URL方式的链接将其放置到的桌面目录中,通常是。行指定了快捷方式的图标,可以根据需要替换为tar.gz包中软件的图标路径。是您想要给复制的文件指定的新名称。打开文本编辑器,创建一个新的文件,并输入以下内容。首先,确定您想要创建快捷方式的。文件,然后修改里面的内容。是原始文件的路径和名称,
2024-04-16 17:21:16
585
原创 Ubuntu上根据关键字模糊查找指定文件夹或文件
打开终端(Ctrl + Alt + T)并使用。来匹配任意数量的字符,或者使用。目录下进行模糊搜索。
2024-04-16 16:49:10
1628
原创 分布式系统的一致性介绍
指的是分布式系统中三个核心概念的权衡:一致性(Consistency)、可用性(Availability)、分区容错性(Partition Tolerance)。根据CAP理论,分布式系统无法同时满足这三个属性,只能在其中两个之间进行权衡。分布式系统的一致性是指系统中多个节点或副本之间数据的一致性状态。根据不同的需求和约束条件,分布式系统可以实现不同级别的一致性。
2024-04-09 19:48:10
696
原创 分布式系统中的CAP理论
CAP理论是分布式计算中的一个重要概念,由加州大学伯克利分校的计算机科学家Eric Brewer在2000年提出,后来由Seth Gilbert和Nancy Lynch在2002年进一步阐述。CAP代表一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),这三个属性是衡量分布式系统设计的关键指标。CAP理论指出,在网络连接不可靠的分布式系统中,这三个属性不可能同时满足,最多只能同时满足其中的两个。
2024-04-09 19:47:02
434
原创 Gradle概述、语法说明
Gradle通过其强大的配置能力和灵活性,为Java项目提供了高效的构建和自动化解决方案。通过使用Gradle,开发者可以轻松地管理复杂的构建逻辑,并确保项目的质量和一致性。
2024-04-08 16:22:38
1499
原创 Raft算法
Raft算法是一种用于管理复制日志的共识算法,它旨在解决分布式系统中的一致性问题。Raft算法的目标是提供一个易于理解和实现的共识机制,同时保持与Paxos算法相当的效率和可靠性。
2024-03-29 16:16:16
683
原创 多值共识协议、向量共识协议、原子广播协议
多值共识问题可以定义如下:在一组分布式进程中,每个进程可以提出一个值(值的长度可以是任意的),多值共识协议需要确保所有正确运行的进程最终能够就一个或多个值达成一致。如果所有正确进程提出的值相同,则协议决定该值;如果正确进程提出的值不同,则协议可以决定任何一个正确进程提出的值,或者一个默认值。一致性层面:多值共识关注单个值的一致性,向量共识关注向量中多个值的一致性,而原子广播关注消息的传递和顺序一致性。协议复杂性:原子广播通常比多值共识和向量共识更复杂,因为它需要处理消息的可靠性和排序两个方面。应用范围。
2024-03-29 10:32:24
834
原创 一致性广播、可靠广播、原子广播、安全因果原子广播以及与拜占庭协议结合
一致性广播、可靠广播、原子广播和安全因果原子广播是分布式系统中用于确保消息传递和一致性的四种不同类型的广播协议。它们各自有不同的目标和特性,适用于不同的应用场景。本文是对《Secure and Efficient Asynchronous Broadcast Protocols》这篇论文所作的关键协议的介绍与总结。
2024-03-28 16:56:41
1518
原创 Python操作MySQL数据库及其代码示例
通过上述介绍和代码示例,使用Python操作MySQL数据库,首先,需要安装相应的数据库驱动模块。然后,通过创建连接和游标对象来执行SQL语句。在执行过程中,应注意使用事务来保证数据的一致性和完整性,并妥善处理可能出现的错误和异常。
2024-03-28 10:57:31
539
原创 Paxos算法概述
Multi-Paxos 是 Basic Paxos 的优化版本,用于处理连续的一致性决策问题,例如在分布式系统中选择一系列的值(例如日志条目)。Multi-Paxos 通过固定接受者集合来减少通信开销,并允许连续的决策过程复用一些之前的状态,从而提高效率。
2024-03-27 17:34:24
527
原创 Python的json格式处理
json模块是Python处理JSON数据的核心工具,它提供了简单直观的API来编码和解码JSON数据。通过掌握json模块的使用,可以轻松地在Python程序中读写JSON格式的数据,以及与其他使用JSON的系统进行数据交换。
2024-03-27 15:31:17
536
原创 Python的面向对象、封装、继承、多态相关的定义,用法,意义
面向对象编程通过封装、继承和多态提供了一种强大的代码组织方式。封装隐藏了对象的内部实现,使得对象易于使用和维护。继承允许我们通过重用代码来减少重复劳动,同时建立类之间的关系。多态使得我们可以编写更通用的代码,处理不同类型的对象。
2024-03-27 10:27:59
552
原创 Python的异常处理
try:raise MyError("自定义异常")print("发生自定义异常:", e.message)可以通过继承Exception类来自定义异常。try:1 / 0except:'''调用example()后输出:Caught a custom exception: Custom error message'''try:zer()异常处理是Python编程中的一个重要部分,它提供了一种结构化的错误管理方式。
2024-03-27 09:59:33
372
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人