python
文章平均质量分 51
蜜糖雪兒
还有什么比坚持更可怕
展开
-
python爬虫的高效学习路径(11/1)
一个professor推荐的一篇文章,感觉有点意思,挑点重点写写,算是给初学者一点方向吧~~~在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。 1.了解爬虫的基本原理及过程2.Requests+Xpath 实现通用爬虫套路3.了解非结构化数据的存储原创 2017-11-01 09:54:54 · 753 阅读 · 0 评论 -
pandas教程---------数据分组(12/4)
使用groupby()可以给数据分组,数据分组的好处是你可以一次性计算得到所有分组中的统计量,比如想计算男女学生的平均成绩分别是多少,可以先按照男女分组,然后计算平均数,我们不用计算完女生然后在计算男生,实际上是一次性完成的,这就是分组的好处。先引入模块,并创建一个DataFrame打印出DataFrame来查看一下结果我们可以以A列进行分组,使用group原创 2017-12-04 20:58:35 · 304 阅读 · 0 评论 -
pandas教程------筛选计数统计(12/4)
上一篇我们讲了pandas实现的一个简单的计数统计,今天我们还是针对同样的数据,统计一下各个专业高考成绩在520以上的学生个数和百分比。下面看看具体的实现过程:先引入pandas,然后读取csv数据我们先筛选出高考成绩在520以上的学生print打印数据的前三行为:然后根据得到的good数据,统计各个专业学生的人数利用print来查看原创 2017-12-04 20:48:48 · 1441 阅读 · 1 评论 -
pandas教程--------计数统计(12/4)
经过之前的学习,我们现在可以做一个简单的统计了,比如计数,这是最简单的统计,我们现在就使用pandas统计一下数据中各个专业学生的数目:先来引入pandas,并且从csv文件中读取数据查看一下前三行数据,看读取数据是否正确选择数据:之前也有相关的教程,假如现在我们要统计【专业名称】这一列,那么需要学会选择它:计数统计我们使用:save_count原创 2017-12-04 20:42:23 · 976 阅读 · 0 评论 -
pandas教程------读取csv数据(12/4)
很多数据是从网上下载而来,数据的格式可能是csv,那么pandas可以很容易的从csv格式的文件中读取数据,下面我们来看看具体的过程:引入pandas使用pandas下的read_csv方法,读取csv文件,参数是文件的路径,这是一个相对路径,是相对于当前工作目录的,那么如何知道当前的工作目录呢?使用os.getcwd()方法获取当前工作目录读取原创 2017-12-04 20:31:33 · 2162 阅读 · 0 评论 -
pandas教程----------Dataframe筛选数据(12/4)
今天还是用到了DataFrame,如果你用一下它的筛选数据的功能,你会大吃一惊,它非常擅长筛选数据,可以极大提高你的工作效率,废话不多说,下面看看几个进行复杂数据筛选的例子。首先我们创建一个DataFrame,该DataFrame包含的数据如下假如我们想要筛选D列数据中大于0的行使用&符号可以实现多条件筛选,当然是用"|"符号也可以实现多条件,只不过他是或的原创 2017-12-04 18:07:38 · 964 阅读 · 0 评论 -
pandas教程---------DataFrame切片操作(12/4)
DataFrame数据框允许我们使用iloc方法来像操作array(数组)一样对DataFrame进行切片操作,其形式上,跟对数组进行切片是一样的,我们下面来演示一下一些典型的切片操作:先创建一个6行4列的DataFrame数据框使用iloc方法,提取第四行数据:我们可以看一下,这种方法得到的返回值是一个series数据返回4-5行,1-2列数据原创 2017-12-04 18:03:38 · 719 阅读 · 0 评论 -
pandas教程---------DataFrame选择数据(12/4)
上一篇文章介绍了如何创建和查看DataFrame数据,这篇文章讲一下如何选择DataFrame中的数据,还是用例子来说明问题。先来看一下今天用到的数据框的内容假如我们要选择A列的数据进行操作:df['a']还可以使用数组的切片操作,但是注意了,切片得到的是行数据如果你想使用这个方法得到列,那就会出现错误我们还可以使用行标签来指定输出的原创 2017-12-04 17:05:51 · 430 阅读 · 0 评论 -
pandas教程-----DataFrame入门(12/4)
pandas是python环境下最有名的数据统计包,而DataFrame翻译为数据框,是一种数据组织方式,这么说你可能无法从感性上认识它,举个例子,你大概用过Excel,而它也是一种数据组织和呈现的方式,简单说就是表格,而在在pandas中用DataFrame组织数据,如果你不print DataFrame,你看不到这些数据,下面我们来看看DataFrame是如何使用的。首先是引入原创 2017-12-04 10:01:48 · 720 阅读 · 0 评论 -
再接着介绍一下Python呗(12/11)
“谁来给我讲讲Python?”第一天学习了Python的基本操作,以及几种主要的容器类型,今天学习python的函数、循环和条件、类,这样才算对Python有一个大致的了解。今天的学习大纲如下:三、函数1、定义函数四、循环与条件1、if语句2、while true/break语句3、for语句4、列表推导式五、类1、闲转载 2017-12-11 10:34:58 · 334 阅读 · 0 评论 -
一大波金融Library来袭之numpy篇(12/10)
###接下来要给大家介绍的系列中包含了Python在量化金融中运用最广泛的几个Library:numpyscipypandasmatplotlib会给初学者一一介绍###NumPy 简介####一、NumPy是什么?量化分析的工作涉及到大量的数值运算,一个高效方便的科学计算工具是必不可少的。Python语言一开转载 2017-12-10 21:38:59 · 331 阅读 · 0 评论 -
谁来给我讲讲Python(12/10)
“谁来给我讲讲Python?”作为无基础的初学者,只想先大概了解一下Python,随便编个小程序,并能看懂一般的程序,那些什么JAVA啊、C啊、继承啊、异常啊通通不懂怎么办,于是我找了很多资料,写成下面这篇日记,希望以完全初学者的角度入手来认识Python这个在量化领域日益重要的语言一 熟悉基本在正式介绍python之前,了解下面两个基本操作对后面的学习是有好处的:转载 2017-12-10 21:21:49 · 319 阅读 · 0 评论 -
Python数据处理的瑞士军刀:pandas(12/10)
####第一篇:基本数据结构介绍####一、Pandas介绍终于写到了作者最想介绍,同时也是Python在数据处理方面功能最为强大的扩展模块了。在处理实际的金融数据时,一个条数据通常包含了多种类型的数据,例如,股票的代码是字符串,收盘价是浮点型,而成交量是整型等。在C++中可以实现为一个给定结构体作为单元的容器,如向量(vector,C++中的特定数据结构)转载 2017-12-10 21:07:39 · 385 阅读 · 0 评论 -
python—pandas中DataFrame类型数据操作函数
python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数。 1)查看DataFrame数据及属性df_obj = DataFrame() #创建DataFrame对象df_obj.dtypes #查看各行的数据格式df_obj['列名'].astype(int)#转换某列转载 2017-11-17 17:25:18 · 1237 阅读 · 2 评论 -
Python数据分析之pandas学习(11/3)
Python中的pandas模块进行数据分析。接下来pandas介绍中将学习到如下8块内容:1、数据结构简介:DataFrame和Series2、数据索引index3、利用pandas查询数据4、利用pandas的DataFrames进行统计分析5、利用pandas实现SQL操作6、利用pandas进行缺失值的处理7、利用pandas实现Excel的数据透视表功转载 2017-11-03 22:18:18 · 641 阅读 · 0 评论 -
Python小程序(0-10/100)
100个Python练手小程序,学习python的很好的资料,覆盖了python中的每一部分,可以边学习边练习,更容易掌握python。【程序1】 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 2.程序源代码:for转载 2017-10-24 16:43:10 · 1410 阅读 · 1 评论 -
python正则表达式
Python正则表达式¶正则表达式是处理字符串的强大工具,拥有独特的语法和独立的处理引擎。我们在大文本中匹配字符串时,有些情况用str自带的函数(比如find, in)可能可以完成,有些情况会稍稍复杂一些(比如说找出所有“像邮箱”的字符串,所有和julyedu相关的句子),这个时候我们需要一个某种模式的工具,这个时候正则表达式就派上用场了。说起来正则表达式效率上可能不如str自转载 2018-01-21 20:48:19 · 302 阅读 · 0 评论