原题链接
题目难度:简单
题目来源:《算法竞赛进阶指南》, HNOI2003
题目描述
地图上有 N 个目标,用整数 X i , Y i X_{i}, Y_{i} Xi,Yi 表示目标在地图上的位置,每个目标都有一个价值 W i W_i Wi。
注意:不同目标可能在同一位置。
现在有一种新型的激光炸弹,可以摧毁一个包含 R × R R \times R R×R 个位置的正方形内的所有目标。
激光炸弹的投放是通过卫星定位的,但其有一个缺点,就是其爆炸范围,即那个正方形的边必须和 x , y x,y x,y 轴平行。
求一颗炸弹最多能炸掉地图上总价值为多少的目标。
输入格式
第一行输入正整数 N 和 R,分别代表地图上的目标数目和正方形包含的横纵位置数量,数据用空格隔开。
接下来 N 行,每行输入一组数据,每组数据包括三个整数 X i , Y i , W i X_{i}, Y_{i}, W_{i} Xi,Yi,Wi,分别代表目标的 x 坐标,y 坐标和价值,数据用空格隔开。
输出格式
输出一个正整数,代表一颗炸弹最多能炸掉地图上目标的总价值数目。
数据范围
$0 \le R \le 10^9 $
0
<
N
≤
10000
0 < N \le 10000
0<N≤10000,
0
≤
X
i
,
Y
i
≤
5000
0 \le X_{i}, Y_{i} \le 5000
0≤Xi,Yi≤5000
0
≤
W
i
≤
1000
0 \le W_i \le 1000
0≤Wi≤1000
输入样例:
2 1
0 0 1
1 1 1
输出样例:
1
题目分析
题目就是说在一个网格区域内放一定数量的炸弹,每个炸弹可以摧毁一个正方形区域的范围,问最多可以摧毁多少价值的目标
那其实把这个问题抽象出来就是,在一个大矩阵中,取出边长为R的正方形,求这个正方形内总价值的最大数目
那么这里的关键问题就是如何去求这个最大值,暴力一点的做法就是依次枚举取最大值
这里就需要使用到我们之前做的二维前缀和的知识,快速求正方形内的价值总和
那么我们枚举的时候,因为边长R是固定的,所以只需要枚举正方形的右下角的坐标即可,例如枚举到(i,j)时,左上角的坐标应该是(i-R+1,j-R+1)
带入我们之前的公式,就可以得到正方形内的价值总和是
r e s = S i , j − S i − R , j − S i , j − R + S i − R , j − R res = S_{i,j} - S_{i-R,j} - S_{i,j-R}+S_{i-R,j-R} res=Si,j−Si−R,j−Si,j−R+Si−R,j−R
因为这里的棋盘大小没有特别大,因此时间复杂度也是可以过的
示例代码
#include<iostream>
using namespace std;
const int N = 5010;
int n, m; // 边界的最大值,棋盘大小
int pre[N][N]; // 这里我们为了防止内存超限,只使用一个前缀和数组,先存入数据,再进行计算即可
int main()
{
int cnt, R;
cin >> cnt >> R;
R = min(5001, R); // 因为当R大于棋盘大小时,最大目标值一定是所有价值的总和
n = m = R; // n和m至少要是R的大小,之后对标记点输入的时候会进行更新
// 数据读入
while (cnt--)
{
int x, y, w;
cin >> x >> y >> w;
x++, y++; // 为求前缀和做预处理,防止数组越界
n = max(x, n);
m = max(y, m);
pre[x][y] += w;
}
// 前缀和
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
pre[i][j] += pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1];
}
}
// 枚举边长为R的矩形,取最大值
int res = 0;
for (int i = R; i <= n; i++)
{
for (int j = R; j <= m; j++)
{
res = max(res, pre[i][j] - pre[i - R][j] - pre[i][j - R] + pre[i - R][j - R]);
}
}
cout << res << '\n';
return 0;
}