62、深入探索Samba:从应用到小型企业部署

深入探索Samba:从应用到小型企业部署

1. 网络应用运行情况与Oplocks机制

在经过适当的测试和研究后,从网络运行许多应用程序是完全可行的,但也有部分应用在这种配置下无法正常工作,而直接从客户端机器的硬盘运行应用通常是比较可靠的。

Oplocks(机会锁)是SMB/CIFS协议用于显著提升性能的系统。在现代版本的Samba中,Oplocks默认开启,客户端可以积极缓存共享数据,即客户端无需将更改立即发送回服务器,而是可先存储在本地缓存或缓冲区中,这种客户端缓存极大地提高了运行速度。

不过,机会锁虽能确保Samba和其他SMB/CIFS客户端与服务器看到一致的数据视图且数据不被损坏,但无法保证SMB/CIFS和UNIX看到一致的数据视图。例如,若客户端CLIENT1对位于\SAMBA1\myshare的myfile文件有机会锁,所有SMB/CIFS客户端能看到一致的数据,但如果从UNIX shell对myfile文件进行重大更改,这些更改可能不会立即反映在SAMBA1上。目前,只有Silicon Graphics的IRIX 6.5.3f及更高版本的UNIX系统能确保与Samba的数据一致性。

2. 在共享上安装Microsoft Office

除了从CD安装Microsoft Office的常规方法外,还有一种行政安装方法。这种方法可将Office安装到SMB/CIFS共享上,客户端机器可从此共享安装Office,还能配置为直接从服务器运行Office,仅将最少的文件复制到客户端机器。

这种安装方式的优点是可直接从服务器对Microsoft Office程序进行集中更新和管理,但缺点是会给网络和服务器带来较大负

Kriging_NSGA3_Topsis克里金预测模型做代理模型多目标遗传3代结合熵权法反求最佳因变量及自变量(Matlab代码实现)内容概要:本文介绍了基于克里金(Kriging)代理模型、多目标遗传算法NSGA-III和TOPSIS决策方法相结合的技术路线,用于反求最优的因变量及对应的自变量组合。该方法首先利用克里金模型对复杂系统进行近似建模,降低计算成本;随后通过NSGA-III算法进行三代多目标优化,获得帕累托前沿解集;最后结合熵权法确定各目标权重,并使用TOPSIS方法从解集中筛选出最接近理想解的最佳方案。整个流程在Matlab平台上实现,适用于工程优化中高耗时仿真模型的替代与多目标折衷分析。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及从事工程优化设计的工程师;熟悉代理模型、遗传算法与多属性决策方法的学习者优先。; 使用场景及目标:①解决计算昂贵的多目标优化问题,如结构设计、能源系统参数优化等;②掌握克里金代理模型构建、NSGA-III算法应用及熵权-TOPSIS集成决策的全流程实现;③复现高水平学术论文中的优化方法,提升科研创新能力。; 阅读建议:建议读者结合提供的Matlab代码逐步调试运行,理解每一步的数据流向与算法逻辑,重点关注代理模型精度验证、NSGA-III参数设置及熵权法权重计算过程,以实现对整体方法的深入掌握与灵活应用
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值