计算机视觉论文笔记
yeeanna
这个作者很懒,什么都没留下…
展开
-
Iterative Filter Adaptive Network for Single Image Defocus Deblurring
论文笔记仅供自己参考FAC:FAC的缺陷:FAC的感受野是3×3,为了能够空间变化和大尺度散焦模糊,我们需要增大感受野,也就需要增大卷积核尺寸,这样内存和计算量都很大。因此提出了IAC层。IAC:用横竖两个一维卷积核局卷积可以扩大感受野。可能造成的缺陷:精度差解决方式:迭代(?)...原创 2022-01-28 22:48:28 · 3692 阅读 · 0 评论 -
Fast RCNN总结笔记
摘要在RCNN的基础上提出的。两个改进的优点:更快更准确。Fast RCNN用VGG16网络,训练集比RCNN快9倍,测试集快213倍。介绍目标检测有巨大挑战——需要精确定位目标:生成候选框;修正候选框。这样些问题势必会影响速度、准确性、简洁性。RCNN的缺点:muti-stage、训练耗费时间空间、检测慢SPPnet的缺点:muti-stage,不能更新池化之前的卷积层导致不准确Fast RCNN优点:mAP高;single-stage;能更新所有网络层;无需磁盘缓存特征。*在这里插原创 2021-04-06 20:55:42 · 333 阅读 · 0 评论