[解题报告]Maximum Product of Splitted Binary Tree

题目链接
给定一棵二叉树,要求移除一个边,使得剩余两颗二叉树之和的乘积最大

首先求出以每个点为根节点的和,将这个和赋给该点的Val
其次遍历二叉树,尝试切除每一条边,查看切除后剩余两颗树之和的差值,该差值越小则乘积越大

Runtime: 116 ms (beats 90.1%)
Memory Usage: 17.1 MB

func maxProduct(root *TreeNode) int {
	var sumNodes func(node *TreeNode) int
	sumNodes = func(node *TreeNode) int {
		if node == nil {
			return 0
		}
		if node.Left != nil && node.Right != nil {
			node.Val += sumNodes(node.Left) + sumNodes(node.Right)
		} else if node.Left != nil {
			node.Val += sumNodes(node.Left)
		} else if node.Right != nil {
			node.Val += sumNodes(node.Right)
		}
		return node.Val
	}

	var ans int
	var ansLeft int
	var ansRight int

	var traversal func(root *TreeNode, rootVal int)
	traversal = func(root *TreeNode, rootVal int) {
		if root == nil {
			return
		}

		if root.Left != nil {
			val := root.Left.Val - rootVal + root.Left.Val
			if val > 0 {
				if val < ans {
					ans = val
					ansLeft = root.Left.Val
					ansRight = rootVal - root.Left.Val
				}
				traversal(root.Left, rootVal)
			} else {
				if -val < ans {
					ans = -val
					ansLeft = root.Left.Val
					ansRight = rootVal - root.Left.Val
				}
			}
		}
		if root.Right != nil {
			val := root.Right.Val - rootVal + root.Right.Val
			if val > 0 {
				if val < ans {
					ans = val
					ansLeft = root.Right.Val
					ansRight = rootVal - root.Right.Val
				}
				traversal(root.Right, rootVal)
			} else {
				if -val < ans {
					ans = -val
					ansLeft = root.Right.Val
					ansRight = rootVal - root.Right.Val
				}
			}
		}
	}

	sumNodes(root)
	ans = math.MaxInt32

	traversal(root, root.Val)

	const mod = 1000000007

	return ((ansLeft % mod) * (ansRight % mod)) % mod
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值