python指数、幂数拟合curve_fit

本文介绍了如何使用Python中的numpy和scipy库进行一次、二次多项式及指数、幂数的拟合。通过具体实例展示了如何利用curve_fit函数来获取最佳拟合参数,并绘制原始数据与拟合曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python指数、幂数拟合curve_fit


1、一次二次多项式拟合
一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。

2、指数幂数拟合curve_fit
使用scipy.optimize 中的curve_fit,幂数拟合例子如下:
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np

def func(x, a, b, c):
    return a * np.exp(-b * x) + c

xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
ydata = y + 0.2 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(func, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [func(i, popt[0],popt[1],popt[2]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt
下面是原始数据和拟合曲线:


下面是指数拟合例子:
def fund(x, a, b):
    return x**a + b
    
xdata = np.linspace(0, 4, 50)
y = fund(xdata, 2.5, 1.3)
ydata = y + 4 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(fund, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [fund(i, popt[0],popt[1]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt
下图是原始数据和拟合曲线:










评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值