HDU 2352 Verdis Quo(模拟)

H - Verdis Quo HDU 2352

Time Limit: 1000 MS Memory Limit: 32768 KB

64-bit integer IO format: %I64d , %I64u Java class name: Main

[Submit] [Status]

Description

The Romans used letters from their Latin alphabet to represent each of the seven numerals in their number system. The list below shows which
letters they used and what numeric value each of those letters represents:

I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1000

Using these seven numerals, any desired number can be formed by following the two basic additive and subtractive rules. To form a number using
the additive rule the Roman numerals are simply written from left to right in descending order, and the value of each roman numeral is added
together. For example, the number MMCLVII has the value 1000 + 1000 + 100 + 50 + 5 + 1 + 1 = 2157. Using the addition rule alone could lead to
very long strings of letters, so the subtraction rule was invented as a result. Using this rule, a smaller Roman numeral to the left of a larger one is
subtracted from the total. In other words, the number MCMXIV is interpreted as 1000 - 100 + 1000 + 10 - 1 + 5 = 1914.

Over time the Roman number writing system became more standardized and several additional rules were developed. The additional rules used today
are:

1. The I, X, or C Roman numerals may only be repeated up to three times in succession. In other words, the number 4 must be represented as IV
and not as IIII.
2. The V, L, or D numerals may never be repeated in succession, and the M numeral may be repeated as many 2. times as necessary.
3. Only one smaller numeral can be placed to the left of another. For example, the number 18 is represented as XVIII but not as XIIX.
4. Only the I, X, or C can be used as subtractive numerals.
5. A subtractive I can only be used to the left of a V or X. Likewise a X can only appear to the left of a L or C, and a C can only be used to the
left of a D or M. For example, 49 must be written as XLIX and not as IL.

Your goal is to write a program which converts Roman numbers to base 10 integers.

Input

The input to this problem will consist of the following:

A line with a single integer "N" (1 ≤ N ≤ 1000), where N indicates how many Roman numbers are to be converted.
A series of N lines of input with each line containing one Roman number. Each Roman number will be in the range of 1 to 10,000 (inclusive)
and will obey all of the rules laid out in the problem's introduction.

Output

For each of the N Roman numbers, print the equivalent base 10 integer, one per line.

Sample Input

3
IX
MMDCII
DXII

Sample Output

9
2602
512

execute time:0.002066 s, 2 db queris.




#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#include<math.h>

using namespace std;

int n;
char str[10010];

int findx(char ch)
{
    if(ch == 'I')
    {
        return 1;
    }
    if(ch == 'V')
    {
        return 5;
    }
    if(ch == 'X')
    {
        return 10;
    }
    if(ch == 'L')
    {
        return 50;
    }
    if(ch == 'C')
    {
        return 100;
    }
    if(ch == 'D')
    {
        return 500;
    }
    if(ch == 'M')
    {
        return 1000;
    }
}

int main()
{
    scanf("%d",&n);
    while(n--)
    {
        scanf("%s",str);
        int a[11000];
        int k = 0;
        a[k] = findx(str[0]);
        for(int i=1;str[i]!='\0';i++)
        {
            if(findx(str[i-1])<findx(str[i]))
            {
                a[k] = findx(str[i]) - a[k];
            }
            else
            {
                a[++k] = findx(str[i]);
            }
        }
        long long int sum = 0;
        for(int i=0;i<=k;i++)
        {
            sum += a[i];
        }
        printf("%lld\n",sum);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值