HDU1575 Tr A(矩阵快速幂)

A - Tr A
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。 
 

Input

数据的第一行是一个T,表示有T组数据。 
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。 
 

Output

对应每组数据,输出Tr(A^k)%9973。
 

Sample Input

       
       
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
 

Sample Output

       
       
2 2686
 

刚刚涉猎,只会写最简单的模板



#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
using namespace std;
const int inf=0x3f3f3f3f;
const int mod=9973;
int n;
struct node
{
    int mp[20][20];
} init,res;
struct node Mult(struct node x, struct node y)// 矩阵相乘
{
    struct node tmp;
    int i,j,k;
    for(i=0; i<n; i++)
    {
        for(j=0; j<n; j++)
        {
            tmp.mp[i][j]=0;
            for(k=0; k<n; k++)
            {
                tmp.mp[i][j]=(tmp.mp[i][j]+x.mp[i][k]*y.mp[k][j])%mod;
            }
        }
    }
    return tmp;
};
struct node expo(struct node x, int k)//矩阵快速幂
{
    struct node tmp;
    int i,j;
    for(i=0; i<n; i++)
    {
        for(j=0; j<n; j++)
        {
            if(i==j)
            {
                tmp.mp[i][j]=1;
            }
            else
            {
                tmp.mp[i][j]=0;
            }
        }
    }
    while(k)
    {
        if(k%2 == 1)
        {
            tmp=Mult(tmp,x);
        }
        x=Mult(x,x);
        k>>=1;
    }
    return tmp;
};
int main()
{
    int T,i,j,k;
    int ans;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d",&n,&k);
        for(i=0; i<n; i++)
        {
            for(j=0; j<n; j++)
            {
                scanf("%d",&init.mp[i][j]);
            }
        }
        res=expo(init,k);
        ans=0;
        for(i=0; i<n; i++)
        {
            ans=(ans+res.mp[i][i])%mod;
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶孤心丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值