- 博客(1)
- 收藏
- 关注
转载 机器学习_交叉熵
1. 引言 我们都知道损失函数有很多种:均方误差(MSE)、SVM的合页损失(hinge loss)、交叉熵(cross entropy)。这几天看论文的时候产生了疑问:为啥损失函数很多用的都是交叉熵(cross entropy)?其背后深层的含义是什么?如果换做均方误差(MSE)会怎么样?下面我们一步步来揭开交叉熵的神秘面纱。 2. 交叉熵的来源 2.1 信息量 一条信息的信息量大小和它的不确定性有很大的关系。一句话如果需要很多外部信息才能确定,我们就称这句话的信息量比较大。比如你听到“云南西双版
2020-10-12 09:18:21 866
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人