计算机视觉中的数学学习--矩阵自由度

本文探讨了矩阵自由度的概念,特别是在上三角矩阵中的应用,指出其非零元素的数量决定了自由度。同时,解释了二维旋转矩阵仅具有一自由度。此外,文章也涉及方程自由度,说明在方程组中,当变量数量超过方程数量时,存在自由度,举例说明如何计算和理解自由度,并指出线性无关方程的重要性。
摘要由CSDN通过智能技术生成

矩阵自由度DOF(degree of freedom)

  •  矩阵自由度定义 

考虑m×n矩阵。这个矩阵有mn个元素。我们可以改变这个矩阵中的mn个值使它成为mn个唯一的矩阵,所以它有mn个自由度。

对于一个m×m的上三角矩阵,第一行有m个非零量,第二行有m-1个非零量,.....,第m-1行有2个非零量,第m行1个非零量,那么总共有1+2+3+....+(m-1)+(m-2),对于最直观的解释,这些非零量的个数就是就是矩阵的自由度。

特别的以二维的旋转矩阵为例:

                                                                                                                         \begin{pmatrix} cos \theta &sin \theta\\ -sin\theta & cos\theta \end{pmatrix}

一旦确定了θ,就决定了矩阵里所有元素的值。这个矩阵只有一个自由度。

如果我们有“等价类”呢?如果我们知道任意矩阵的所有比例都是相等的。我们还剩下多少个自由度?对于任何矩阵,当(1,1)元素不为零时,我们可以将矩阵的所有元素除以第一个元素使其为1。所以如果我们有两个矩阵A和B=2A,当我们缩放这些矩阵使它们的第一个元素是1,我们会发现它们是等价的。这样,我们就消除了一个自由度。这就是同形词的情况。对于3×3单应矩阵,只有8个自由度。这些自由度也可以用几何来解释。

  • 方程自由度的定义

自由度是指变量比方程多的情况自由度是指变量比方程多的情况。如果有10个变量和7个方程就有3个自由度。也就是说,其中3个变量可以假设你想要的任何值,对于这3个变量的任何给定值的选择,其余7个变量有一个特定的值。也就是说,方程的个数加上自由度总能得到变量的个数。如果方程的数目大于变量的数目你就没有任何自由方程组通常是不能解的。如果你有自由度,你通常需要找到一些额外的约束来添加额外的方程。我们的想法是,在只有一个解的情况下,方程的个数和变量的个数完全相同。这是在方程线性无关的前提下。在计算自由度之前,必须先去掉所有线性相关的方程。

例如,2x + 3y = 5和4x + 6y = 10是两个方程但它们不是线性无关的所以当你移去一个方程你会看到只有一个方程有两个变量所以你有一个方程和一个自由度。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值