选第k小元素:特定分治策略
其实就是分两步:第一步,排序;第二步,寻找。
但这里为了加快寻找的速度,不是将数组里所有的数一次性无脑排序,而是以5个元素为一组进行排序,再将每组中的中位数分为一个新数组进行排序,取出新数组中的中位数,这样就可以得到数组a中的中位数了。再将数组中所有元素与中位数进行比较,计算比中位数小,等于,大的元素的个数,将所要取的k值与其进行比较,缩小查找范围,在哪一个分区,就按上述方法重新操作,即可得到第k小的元素。
这里的排序我用到了二分归并排序,比较高效。
核心代码就是上述的过程,源代码在下面贴上,这里就不细说了。为了让大家对过程更明白,我将每一步的过程都打印出来了。
其实核心就是锁定第k小的值在哪一个区域,缩小区域,重新寻找中位数,然后在锁定k的区域,知道找到第k小的值。
源代码:
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
#define MAXSIZE 1000
//用二分归并排序将数组从小到大排序
void merge(int a[], int left, int mid, int right){
int i,k;
int *tmp = (int *)malloc((right-left+1)*sizeof(int));
int left1 = left;
int left2 = mid;
int right1 = mid+1;
int right2 = right;
for(k = 0; left1 <= left2 && right1 <= right2; k++){
if(a[left1] <= a[right1])
tmp[k] = a[left1++];
else
tmp[k]=a[right1++];
}
if(left1 <= left2){
for(i = left1; i <= left2; i++)
tmp[k++] = a[i];
}
if(right1 <= right2){
for(i = right1; i <= right2; i++)
tmp[k++] = a[i];
}
for(i = 0; i < right-left+1; i++){
a[left+i] = tmp[i];
}
free(tmp);
return;
}
void merge_sort(int a[], int left, int right)
{
int mid = 0;
if(left < right)
{
mid = (left + right) / 2;
merge_sort(a, left, mid);
merge_sort(a, mid+1, right);
merge(a, left, mid, right);
}
return;
}
int select(int a[], int left, int right, int k){
int n = right - left;
if (n < 5){ //若少于5个不用分组直接二分归并后输出中位数
merge_sort(a, left, right-1);
return a[left+k-1];
}
int i;
int s=n / 5; //5个数一组,共s组
int *m = new int[s];//中位数数组
for (i = 0; i < s; i++){
merge_sort(a, left+i*5, left+i*5+5-1); //5个分为一组进行排序
m[i] = a[left+i*5+2]; //每组中位数存入中位数数组m里
}
merge_sort(m, 0, i-1); //将中位数数组进行排序
int mid = m[i/2];
int *a1 = new int[n];
int *a2 = new int[n];
int *a3 = new int[n];
int num1 = 0, num2 = 0, num3 = 0;
for(int i = left; i < right; i++){
if(a[i] < mid)
a1[num1++] = a[i];
else if(a[i] == mid)
a2[num2++] = a[i];
else
a3[num3++] = a[i];
}
if(num1 >= k) //若第k小于num1,说明k值在num1中,继续递归select
return select(a1, 0, num1, k);
if (num1+num2 >= k) //若k在num1和num1+num2之间,k值只可能刚好是mid
return mid;
else //注意,因为前面已经占据了num1+num2个值,所以在mid后面的值中找k值时要减掉num1+num2个数
return select(a3, 0, num3, k-num1-num2);
}
int main()
{
int n;
int k;
int a[MAXSIZE];
cout << "输入数组大小:";
cin >> n;
cout << "输入数据:";
for(int i=0;i<n;i++)
{
cin >> a[i];
}
cout << "输入所求的第几小元素:";
cin >> k;
cout << "第" << k << "小元素:";
cout << select(a,0,n,k) << endl;
return 0;
}