选第k小元素:特定分治策略

博客介绍了如何通过分治策略和二分归并排序来快速找到数组中的第k小元素。首先,将数组以5个元素为一组进行排序,然后找出每组的中位数组成新的中位数数组,再对中位数数组排序。接着,根据中位数确定第k小元素所在的区间,并递归地在该区间内查找,直至找到目标元素。这种方法减少了全数组排序的时间复杂度,提高了效率。
摘要由CSDN通过智能技术生成

选第k小元素:特定分治策略

其实就是分两步:第一步,排序;第二步,寻找。
但这里为了加快寻找的速度,不是将数组里所有的数一次性无脑排序,而是以5个元素为一组进行排序,再将每组中的中位数分为一个新数组进行排序,取出新数组中的中位数,这样就可以得到数组a中的中位数了。再将数组中所有元素与中位数进行比较,计算比中位数小,等于,大的元素的个数,将所要取的k值与其进行比较,缩小查找范围,在哪一个分区,就按上述方法重新操作,即可得到第k小的元素。
这里的排序我用到了二分归并排序,比较高效。
核心代码就是上述的过程,源代码在下面贴上,这里就不细说了。为了让大家对过程更明白,我将每一步的过程都打印出来了。
在这里插入图片描述
在这里插入图片描述
其实核心就是锁定第k小的值在哪一个区域,缩小区域,重新寻找中位数,然后在锁定k的区域,知道找到第k小的值。
源代码:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
#define MAXSIZE 1000

//用二分归并排序将数组从小到大排序
void merge(int a[], int left, int mid, int right){
    int i,k;
    int *tmp = (int *)malloc((right-left+1)*sizeof(int));
    int left1 = left;
    int left2 = mid;
    int right1 = mid+1;
    int right2 = right;
    for(k = 0; left1 <= left2 && right1 <= right2; k++){
        if(a[left1] <= a[right1])
            tmp[k] = a[left1++];
        else
            tmp[k]=a[right1++];
    }
    
    if(left1 <= left2){
        for(i = left1; i <= left2; i++)
            tmp[k++] = a[i];
    }

    if(right1 <= right2){
        for(i = right1; i <= right2; i++)
            tmp[k++] = a[i];
    }
    for(i = 0; i < right-left+1; i++){
        a[left+i] = tmp[i];
    }
    free(tmp);
    return;
}
void merge_sort(int a[], int left, int right)
{
    int mid = 0;
    if(left < right)
    {
        mid = (left + right) / 2;
        merge_sort(a, left, mid);
        merge_sort(a, mid+1, right);
        merge(a, left, mid, right);
    }
    return;
}

int select(int a[], int left, int right, int k){
    int n = right - left;
    if (n < 5){     //若少于5个不用分组直接二分归并后输出中位数
        merge_sort(a, left, right-1);
        return a[left+k-1];
    }
    int i;
    int s=n / 5;    //5个数一组,共s组
    int *m = new int[s];//中位数数组
    for (i = 0; i < s; i++){
        merge_sort(a, left+i*5, left+i*5+5-1);  //5个分为一组进行排序
        m[i] = a[left+i*5+2];   //每组中位数存入中位数数组m里
    }
    merge_sort(m, 0, i-1);  //将中位数数组进行排序
    int mid = m[i/2];
    int *a1 = new int[n];
    int *a2 = new int[n];
    int *a3 = new int[n];
    int num1 = 0, num2 = 0, num3 = 0;
    for(int i = left; i < right; i++){
        if(a[i] < mid)
            a1[num1++] = a[i];
        else if(a[i] == mid)
            a2[num2++] = a[i];
        else
            a3[num3++] = a[i];
    }
    if(num1 >= k)   //若第k小于num1,说明k值在num1中,继续递归select
        return select(a1, 0, num1, k);
    if (num1+num2 >= k)    //若k在num1和num1+num2之间,k值只可能刚好是mid
        return mid;
    else    //注意,因为前面已经占据了num1+num2个值,所以在mid后面的值中找k值时要减掉num1+num2个数
        return select(a3, 0, num3, k-num1-num2);
}


int main()
{
    int n;
    int k;
    int a[MAXSIZE];
    cout << "输入数组大小:";
    cin >> n;
    cout << "输入数据:";
    for(int i=0;i<n;i++)
    {
        cin >> a[i];
    }
    cout << "输入所求的第几小元素:";
    cin >> k;
    cout << "第" << k << "小元素:";
    cout << select(a,0,n,k) << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值