Weibull Distribution韦布尔分布的深入详述(2)参数和公式意义

本文深入探讨了韦伯分布的三个关键参数——形状参数β、缩放参数η和位置参数γ对概率分布函数的影响。β决定了分布的形状,β=1对应指数分布,β=2对应瑞利分布;η影响分布的宽度,η越大分布越扁平;γ调整分布的位置。通过参数的组合变换,可以模拟系统全生命周期的故障率变化,形成经典的浴缸曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

上一章里面我们主要针对韦伯分布的基本公式和意义进行了阐述,本章我们深入一点,针对韦伯分布的公式里面的三个重要参数的作用和意义进行详细讨论。
韦伯分布从诞生起,就因为他分布的多样性,导致适用于很多不同的应用场景。支持这种广泛应用的基础是,这3个参数的变换可以带来分布的显著的改变。

1 韦伯分布的三个参数概率分布方程:

【案,这些分布方程在(1)章我们已经必须详细的介绍了各种类型和推导,现在还是列出3参数的公式。】

1.1 概率密度函数PDF(f(t))

话不多说,韦伯分布的最详细的表达式,我们在上一章已经表述。那就是三参数的韦伯分布。
概率密度函数PDF表达式和图形如下:
f ( t

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Franklin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值