第一次发博,《染色法与构造法在棋盘上的应用》的理解

这篇博客分享了对方奇论文中染色法和构造法在解决棋盘覆盖问题的理解,包括完全覆盖的定理、异形覆盖的实例分析以及马路径的哈氏路径问题。博主通过实例解析了如何确定棋盘上需剪去的方格以及如何构造保持哈氏路径的方法,同时提到最后一题涉及估价上界和搜索,但尚未掌握。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了太多大神的文章,被吓的半句话也不敢乱说,然后看了很多很多人教育我说要学会写博客,而我一直都觉得自己弱成渣,分分钟被秒成狗,然而我还是来了,因为尽管我弱,而你,却无可奈何。

 

废话不多说,第一次就不发别人发过的题解了,别人没发过的不用说,我肯定不会做。。。

 

就发个对于方奇论文《染色法与构造法在棋盘上的应用》的理解吧。简单的就不抄了。

(表示自己经常看不懂他们的论文,逃)

 

 

概念:指用若干图形去覆盖棋盘。覆盖的每个图形也由若干格子组成,称为覆盖形。约定任两个覆盖形互不重叠,任一覆盖形中任一格总与棋盘上某格重合。

 

其中的定理2  m*n棋盘存在p*q矩形的完全覆盖充分必要条件是m,n满足下列条件之一:

l(i)   p|x且q|y

l(ii) p|x,q|x,且存在自然数a,b,使y=ap+bq

其中{x,y}={m,n}

 

 

情况一就非常好理解了,都整除,挨着放就能放满。情况二的放法也很简单,上面横着放,下面竖着放,这样子总能放开。

 

然后是异形覆盖。

 

 

l例3  8*8棋盘剪去哪个方格才能用21个1*3的矩形覆盖


这题猛地一看根本不知道怎么做的,给了这个图就明显多了,还是分三种颜色进行染色,

蓝色:21个

白色:22个

黑色:2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值