【免费模板】2023数学建模国赛word+latex模板免费分享

无需转发 免费获取2023国赛模板,获取方式见文末

模板文件预览如下:

在这里插入图片描述

模板参考格式如下:
(题目)XXXXXX

摘 要:

开头段:需要充分概括论文内容,一般两到三句话即可,长度控制在三至五行。
问题一中,解决了什么问题;应用了什么方法;得到了什么结果。
问题二中,解决了什么问题;应用了什么方法;得到了什么结果。
问题三中,解决了什么问题;应用了什么方法;得到了什么结果。
结尾段:可以总结下全文,也可以介绍下你的论文的亮点,也可以对类似的问题进行适当的推广。
关键词:关键词1 关键词2 关键词3 关键词4

(1)用1、2句话说明原问题中要解决的问题;
(2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点;
(3)算法思想(求解思路),特色;
(4)主要结果(数值结果,结论);(回答题目的全部“问题”)
(5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广

(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点我们对用。。。。。。。。的方法解决;
(第2段)对于问题1我们用。。。。。。。。数学中的。。。。。。。。首先建立了。。。。。。。。模型I。在对。。。。。。。。模型改进的基础上建立了。。。。。。。。。模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。。。。。。。。。,然后借助于。。。。。。。数学算法和。。。。。。软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果

注意事项:
本Word模版是以国赛的标准创建的模版,也适用于国内绝大多数的数学建模比赛。
首页三要素: 论文标题 + 摘要 + 关键词
(1)标题:
基于所使用的主要模型或者方法作为标题(推荐)
直接使用赛题所给的题目或者要研究的问题作为标题
(2)摘要:
摘要是数模论文写作中最重要的一部分,因为评阅老师的时间有限,拿到一篇论文后不会完整的从头读到尾,所以评阅老师往往会重点阅读摘要部分,并结合官方的评阅要点来对你的论文进行初步评定。因此,大家一定要好好打磨论文的摘要,摘要一般是其他部分都完成后再来书写,写完后需要反复阅读反复修改。
(3)关键词:
关键词一般放4-6个,可以放论文中使用的主要模型,也可以放论文里面出现次数较多,能体现论文的主要内容的词。

目 录

一、问题重述 5
1.1问题背景 5
1.2问题的数据条件 6
1.3问题的提出 6
二、问题分析 6
2.1问题总分析 6
2.2具体问题分析 6
2.2.1问题一的分析 6
2.2.2问题二的分析 6
2.2.3问题三的分析 6
2.2.4问题四的分析 7
三、模型假设 7
四、符号说明 8
五、模型建立与求解 8
5.1问题一的模型 8
5.1.1数据预处理 8
5.1.2模型思路与分析 8
5.1.3模型检验 8
5.2问题二的模型 8
5.2.1指标说明 8
5.2.2模型思路与分析 8
5.2.3模型检验 8
5.3问题三的模型 9
5.3.1指标说明 9
5.3.2模型思路与分析 9
5.3.3模型检验 9
5.4问题四求解 9
六、模型评价与推广 9
6.1模型的优缺点 9
6.2模型的改进与推广 9
七、参考文献 10
八、附录 10

一、
问题重述
注意:在写这部分的内容时,绝对不可照抄原题!(论文会查重)
应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一遍。语言需要简明扼要,没有必要像原题一样面面俱到。
1.1问题背景

1.2问题的数据条件

1.3问题的提出
(1)XXX
(2)XXX

本模板由千千小屋数模团队整理扣群:882663918

二、问题分析
2.1问题总分析
首先,XXX其次,XXX再次,XXX最后,XXX,并利用XXX方法检验模型的合理性。
本文的总体分析流程图如下:

图1 问题的总分析

2.2具体问题分析
2.2.1问题一的分析
问题一要求XXX(不要用我们!)用第三人称,本文。
从实际问题到模型建立是一种从具体到抽象的思维过程,问题分析这一部分就是沟通这一过程的桥梁,因为它反映了建模者对于问题的认识程度如何,也体现了解决问题的雏形,起着承上启下的作用,也很能反应出建模者的综合水平。
这部分的内容应包括:题目中包含的信息和条件,利用信息和条件对题目做整体分析,确定用什么方法建立模型,一般是每个问题单独分析一小节,分析过程要简明扼要, 不需要放结论。
建议在文字说明的同时用图形或图表(例如流程图)列出思维过程,这会使你的思维显得很清晰,让人觉得一目了然。
(注意:问题分析这一部分放置的位置比较灵活,可以放在问题重述后面作为单独的一节(见到的频率最高),也可以放在模型假设和符号说明后面作为单独的一节,还可以针对每个问题将其写在模型建立中。)

2.2.2问题二的分析
问题二要求XXXX

2.2.3问题三的分析
问题三要求XXX。

2.2.4问题四的分析
问题四要求XXX
三、模型假设
1.XX
2.XX
3.XX
视频中介绍了6类常见的模型假设:
1.题目明确给出的假设条件
2.排除生活中的小概率事件(例如黑天鹅事件、非正常情况)
3.仅考虑问题中的核心因素,不考虑次要因素的影响
4.使用的模型中要求的假设
5.对模型中的参数形式(或者分布)进行假设
6.和题目联系很紧密的一些假设,主要是为了简化模型

四、符号说明
符号 说明 单位

本部分是对模型中使用的重要变量进行说明,一般排版时要放到一张表格中。
注意:第一:不需要把所有变量都放到这个表里面,模型中用到的临时变量可以不放。第二:下文中首次出现这些变量时也要进行解释,不然会降低文章的可读性。

五、
模型建立与求解
(注意:这个部分里面的标题可根据你的论文内容进行调整,我这里给的是一个通用的模版)
5.1问题一的模型
模型建立是将原问题抽象成用数学语言的表达式,它一定是在先前的问题分析和模型假设的基础上得来的。因为比赛时间很紧,大多时候我们都是使用别人已经建立好的模型。这部分一定要将题目问的问题和模型紧密结合起来,切忌随意套用模型。我们还可以对已有模型的某一方面进行改进或者优化,或者建立不同的模型解决同一个问题,这样就是论文的创新和亮点。

5.1.1数据预处理

5.1.2模型思路与分析

5.1.3模型检验

或者

5.1.1模型的建立
模型建立是将原问题抽象成用数学语言的表达式,它一定是在先前的问题分析和模型假设的基础上得来的。因为比赛时间很紧,大多时候我们都是使用别人已经建立好的模型。这部分一定要将题目问的问题和模型紧密结合起来,切忌随意套用模型。我们还可以对已有模型的某一方面进行改进或者优化,或者建立不同的模型解决同一个问题,这样就是论文的创新和亮点。

5.1.2模型的求解
把实际问题归结为一定的数学模型后,就要利用数学模型求解所提出的实际问题了。一般需要借助计算机软件进行求解,例如常用的软件有Matlab, Spss, Lingo, Excel, Stata, Python等。求解完成后,得到的求解结果应该规范准确并且醒目,若求解结果过长,最好编入附录里。(注意:如果使用智能优化算法或者数值计算方法求解的话,需要简要阐明算法的计算步骤)

问题二模型的建立与求解

这里插入公式 ()

问题三模型的建立与求解
这里插入公式 ()

5.2问题二的模型
5.2.1指标说明

5.2.2模型思路与分析

5.2.3模型检验

5.3问题三的模型
5.3.1指标设计

5.3.2模型思路与分析

5.3.3模型检验
六、模型的分析与检验
模型的分析与检验的内容也可以放到模型的建立与求解部分,这里我们单独抽出来进行讲解,因为这部分往往是论文的加分项,很多优秀论文也会单独抽出一节来对这个内容进行讨论。
模型的分析 :在建模比赛中模型分析主要有两种,一个是灵敏度(性)分析,另一个是误差分析。灵敏度分析是研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。其通用的步骤是:控制其他参数不变的情况下,改变模型中某个重要参数的值,然后观察模型的结果的变化情况。误差分析是指分析模型中的误差来源,或者估算模型中存在的误差,一般用于预测问题或者数值计算类问题。
模型的检验:模型检验可以分为两种,一种是使用模型之前应该进行的检验,例如层次分析法中一致性检验,灰色预测中的准指数规律的检验,这部分内容应该放在模型的建立部分;另一种是使用了模型后对模型的结果进行检验,数模中最常见的是稳定性检验,实际上这里的稳定性检验和前面的灵敏度分析非常类似,等会大家看到例子就明白了。

六、模型评价、改进与推广
注:本部分的标题需要根据你的内容进行调整,例如:如果你没有写模型推广的话,就直接把标题写成模型的评价与改进。很多论文也把这部分的内容直接统称为“模型评价”部分,也是可以的。

6.1模型的优点
优缺点是必须要写的内容,改进和推广是可选的,但还是建议大家写,实力比较强的建模者可以在这一块充分发挥,这部分对于整个论文的作用在于画龙点睛。

1.XXX
2.XXX
6.2模型的缺点
缺点写的个数要比优点少
1.XXX
2.XXX

6.3模型的改进与推广
1、改进之处主要包括以下几点:主要是针对模型中缺点有哪些可以改进的地方;
(1)XXX
(2)XXX
2、模型推广主要可以从以下几点考虑:将原题的要求进行扩展,进一步讨论模型的实用性和可行性。

七、参考文献
[1]苗文凯,刘庆芳,刘海云,苏健. 文本情感分析技术在中邮网院的应用研究[J]. 邮政研究,2022,38(02):28-32.

所有引用他人或公开资料(包括网上资料)的成果必须按照科技论文的规范列出参考文献,并在正文引用处予以标注。

常见的三种参考文献的表达方式(标准不唯一):

书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年月。
期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
网上资源(例如数据库、政府报告)的表述方式为: [编号] 作者,资源标题,网址,访问时间。

七、附录
除了支撑材料的文件列表和源程序代码外,附录中还可以包括下面内容:
某一问题的详细证明或求解过程;
自己在网上找到的数据;
比较大的流程图;
较繁杂的图表或计算结果

附录1
介绍:支撑材料的文件列表

附录2
介绍:该代码是某某语言编写的,作用是什么

附录3
介绍:该代码是某某语言编写的,作用是什么

%%%第一问 对诗中的关键词出现的个数进行统计
import jieba
#引入jieba中文分词库

txt = open(“poem.txt”, encoding=“utf-8”).read() %poem.txt是诗的所有样本

def jiebafenci(txt, wordslist):
%结巴分词加载自定义词典
jieba.load_userdict(‘keywords.txt’) %keywords.txt是要查找的关键词
%精确模式
words = jieba.lcut(txt)
counts 用来保存所有关键词出现的次数
counts = {}
for word in words:
counts[word] = counts.get(word, 0) + 1
lst = []
%count用来计算关键词出现的总数
count = 0
for i in range(len(wordslist)):
try:
print(wordslist[i], counts[wordslist[i]])
count += counts[wordslist[i]]
except:
lst.append(wordslist[i])

%输出keywords中有但是没有在poem中出现的词
print('不存在的词:', lst)

print('关键词出现的总数:',count)

if name == ‘main’:
txt = open(“dd.txt”, encoding=“utf-8”).read()
need_words = open(“keywords.txt”, encoding=“utf-8”).read()
%对文件进行切片
find = need_words.split()
jiebafenci(txt, find)

%%%第三问层次分析matlab代码:
disp(‘请输入准则层判断矩阵A(n阶)’);
A=input(‘A=’);
[n,n]=size(A);
[V,D]=eig(A);%求得特征向量和特征值
%求出最大特征值和它所对应的特征向量
tempNum=D(1,1);
pos=1;
for h=1:n
if D(h,h)>tempNum
tempNum=D(h,h);
pos=h;
end
end
w=abs(V(:,pos));
w=w/sum(w);
t=D(pos,pos);
disp(‘特征向量w=’);disp(w);disp(‘最大特征根t=’);disp(t);
%进行矩阵的一致性检验
CI=(t-n)/(n-1);
%引入随机一致性指标RI
RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59 1.60 1.61 1.615 1.62 1.63];
CR=CI/RI(n);
%若CR值小于0.1,则认为矩阵的一致性可以接受,反之不能
接受
if CR<0.10
disp(‘此矩阵的一致性可以接受!’);
disp(‘CI=’);disp(CI);
disp(‘CR=’);disp(CR);
else disp(‘此矩阵的一致性不可接受!’);
end

本模板由千千小屋数模团队整理扣群:882663918
数学建模模板(建模论文竞标准版),1. 应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法应用意识:要解决实际问题,结 果、论符合;模型方法果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。 果要易于理解,便实际应用;站在者的立场上想问题处。  2. 数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象数学建模:用方法解决问题, 要有型;的抽象方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。 方法有普适性、科学,不局限于本具体问题的解决。  3. 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 创新意识:建模有特点,更加合理、科学效符实际;普遍 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。 应用意义;不单纯为创新而。
<think>嗯,用户需要全大学生统计建模大的论文模板,但可能官方并没有直接提供下载链接。首先,我需要确认这个比是否有官方网站,通常这类大的主办方可能会在官网上发布相关资源。不过根据之前的引用内容,用户提供的参考资料是关于数学建模和交通流量管控的论文思路,并没有直接提到统计建模大模板。这时候可能需要根据数学建模的通用结构来推测统计建模大的可能结构,因为它们可能有相似之处。 接下来,用户可能需要的模板结构应该包括摘要、问题重述、模型假设、符号说明、模型建立与求解、结果分析、模型评价与推广、参考文献、附录等部分。这些部分在数学建模论文中很常见,所以统计建模可能也类似。同时,用户可能需要具体的示例或参考资料,但如果没有直接的模板,可能需要建议他们参考往届优秀论文或者相关资源平台。 然后,用户提到“下载示例”,但考虑到版权问题,不能直接提供下载链接。这时候应该建议他们通过官方网站、学术论坛或者教育机构资源库寻找,比如校内的数学建模协会、知网、万方等数据库,或者像GitHub、LaTeX模板库这样的平台。同时,需要注意提醒用户遵守学术规范,正确引用参考文献。 另外,用户可能对论文格式的具体要求有疑问,比如是否必须使用LaTeX,或者是否有特定的排版要求。根据常见的数学建模LaTeX是推荐的工具,但也要看具体比的规定。需要建议用户查看比官方发布的格式指南,或者参考往届论文的格式。 最后,用户可能需要论文写作的指导,比如如何构建模型、如何进行分析等。这时候可以结合引用中的内容,比如引用[2]提到的交通流量模型、信号灯优化模型等,说明在统计建模中可能需要用到的模型类型,如回归分析、时间序列分析、机器学习算法等。同时,强调模型假设的重要性,如引用[1]中的例子,合理假设可以简化问题,但需明确说明。 总结下来,回答需要包括模板结构建议、获取途径、写作注意事项,并结合已有的引用内容提供相关示例,同时生成相关问题帮助用户进一步探索。</think>### 全大学生统计建模大论文模板建议 全大学生统计建模大论文通常遵循“问题分析-模型构建-求解验证-结论推广”的结构,结合数学建模的通用模板和统计学科特色,建议包含以下部分: #### 1. **摘要** - 简要说明研究问题、方法、模型和结论,控制在300字以内。 - 示例: > 本文针对XXX问题,基于XXX数据,采用XXX方法构建统计模型,通过XXX算法求解,得出XXX结论,并提出XXX建议[^1]。 #### 2. **问题重述与背景分析** - 明确题目要求,结合社会背景或数据特点说明研究意义。 - 示例(参考引用[1]): > 假设各省市的生活水平和教育成本是主要影响因素,忽略次要因素[^1]。 #### 3. **模型假设与符号说明** - 列出合理的假设以简化问题,并定义关键符号。 - 示例: $$ \begin{aligned} &X_i: \text{第i个影响因素},\\ &\beta: \text{回归系数} \end{aligned} $$ #### 4. **数据预处理与描述性统计** - 清洗数据(如缺失值处理、异常值检测),展示数据分布特征。 - 示例: > 使用箱线图识别异常值,采用均值填充法处理缺失数据。 #### 5. **模型建立与求解** - 结合统计方法(如回归分析、时间序列、机器学习)构建模型。 - 示例(参考引用[2]): > 通过时间序列分析(如ARIMA模型)预测趋势[^2]。 $$ y_t = \alpha + \beta t + \epsilon_t \quad (\text{线性趋势模型}) $$ #### 6. **结果分析与检验** - 验证模型有效性(如残差分析、假设检验),可视化结果。 - 示例: > 使用$R^2$评估回归模型拟合优度,$p<0.05$时拒绝原假设。 #### 7. **模型评价与推广** - 分析优缺点,提出改进方向或实际应用场景。 #### 8. **参考文献与附录** - 按学术规范标注文献,附录可包含代码、数据或详细推导。 --- ### **论文模板获取途径** 1. **官方渠道**:查看大官网或通知文件,部分事会提供往届优秀论文示例。 2. **学术平台**: - 知网、万方:搜索“统计建模大+获奖论文”关键词。 - GitHub:检索`statistical-modeling-template`,部分开源项目提供LaTeX模板。 3. **教育机构资源**:联系指导老师或学校数学建模协会,获取内部资料。 --- ### **注意事项** - **格式规范**:若比未明确要求,可参考《全大学生数学建模论文格式规范》。 - **代码与数据**:附录需提供可复现的代码(Python/R)和原始数据(脱敏后)。 - **学术诚信**:引用他人成果时需标注来源,避免抄袭。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千千小屋grow

感谢支持,干杯

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值