线性代数_第二章矩阵

本文详细介绍了线性代数中的矩阵概念,包括线性变换、投影变换和旋转变换。矩阵的运算是重点,涵盖了矩阵乘法、转置、方阵行列式和共轭矩阵。同时,讨论了逆矩阵的定义、性质及其求解方法,并简要提及了矩阵的分块化,特别是块对角方阵的性质和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.矩阵

只有一行(列)的矩阵:行(列)矩阵,行(列)向量。

1.1 线性变换:

在这里插入图片描述

  • 系数矩阵:系数为矩阵:
    在这里插入图片描述
  • 单位矩阵
    主对角线上的元素是1,其余元素为0;线性变换为n个恒等式
    在这里插入图片描述
  • 对角矩阵:

主对角线上的元素是等式系数,其余元素为0;线性变换为n个线性方程
在这里插入图片描述
在这里插入图片描述

1.2 投影变换

向量在x轴,y轴上的投影,
在这里插入图片描述
在这里插入图片描述

1.3 旋转变换

在这里插入图片描述
在这里插入图片描述

2.矩阵的运算

2.1 矩阵与矩阵相乘

在这里插入图片描述
note:

在这里插入图片描述

线性变换:
在这里插入图片描述

2.2 矩阵的转置

  • 定义:

在这里插入图片描述

  • 运算规律:

在这里插入图片描述

  • 对称矩阵:

在这里插入图片描述

2.3 方阵行列式

n阶方阵:
在这里插入图片描述

2.4 共轭矩阵

在这里插入图片描述

3. 逆矩阵

3.1定义:

在这里插入图片描述
在这里插入图片描述

3.2 性质

  • 唯一性:a的逆阵是唯一的

在这里插入图片描述

  • 如何求逆:

在这里插入图片描述

  • 运算规律:

在这里插入图片描述

3 矩阵分块化

在这里插入图片描述

3.1 块对角方阵

  • 对角线的子块都是方阵

在这里插入图片描述

  • 性质:

在这里插入图片描述

  • 线性方程组:

在这里插入图片描述
克拉默法则:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值