贪心算法 - 0-1背包问题(转载)

贪心算法——0-1背包问题

0/1 背包问题
有一个容量为weight的背包,现在要从n件物品中选取若干件装入背包中,每件物品i的重量为w[i],
价值为p[i]。定义一种可行的背包装载为:背包中物品的总重不能超过背包的容量,并且一件物品要么全部选取,要么不选取。定义最佳装载是指所装入的物品价值最高,并且是可行的背包装载。


【样例输入】
11 {weight}
4 {n}
2 4 6 7 {w[i]}
6 10 12 13 {p[i]}


【样例输出】
0 1 0 1
23


【问题分析】
设有数组chosen[1..n],若chosen[i]=1,表示物品i被装入了背包中,chosen[i]=0表示物品i不
装入背包中。那么,chosen[0,1,0,1]就是一种可行的背包装载方案,也是一种最佳的装载方案,此时的总价值为23。


【算法分析】
0/1背包问题有好几种贪心策略,每种贪心策略都是采用多步过程来完成背包的装入,在每一步中,
都是利用某种固定的贪心准则来选择将某一件物品装入背包。


一种贪心准则为:从剩余的物品中,选出可以装入背包的价值最大的物品。这种贪心准则不能保证得
到最优解。例如,weight=105,n=3,w=[100,10,10],p=[20,15,15],按照以上这种“价值贪心准则”,获得的解为choice=[1,0,0],这种方案的总价值为20,而最优解为choice=[0,1,1],其总价值为30。


另一种方案是“重量贪心准则”,即从剩下的物品中,选择可以装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下,不一定能得到最优解,例如,weight=25,n=2,
w=[10,20],p=[5,100]。获得的解为choice=[1,0],总价值为5,比最优解choice=[0,1]的总价值100要差。


本题还有一种方案,即“单位价值贪心准则”,这种方案是从剩余物品中,选择可装入包的p[i]/w[i]
值最大的物品,这种策略也不能保证得到最优解。例如,weight=30,n=3,w=[20,15,15],p=[40,25,25]。
获得的解为choice=[1,0,0],总价值为40,而最优解为choice=[0,1,1]的总价值为50。
其实,0/1背包问题是一个复杂的NP问题。对于这类问题,也许根本就不存在多项式时间的算法。在
用贪心法解这类问题时,我们还可以结合其他的一些优化策略,如启发式策略等,使解的结果与最优解相差在一定的范围内,也就是,可以得到原问题的近似最优解。另外,在解本题这样的问题时,还可以采用动态规划方法。

 

 

转自: http://liuyangxdgs.blog.163.com/blog/static/29137763200851405846156/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
背包问题贪心算法背包问题 ---- * 已知有n种物品和一个可容纳M重量的背包,每种物品i的重量是w[i]。假定将物品i的一部分x[i]放入背包就会得到p[i]x[i]的效益,这里, * 0<=x[i]<=1,p[i]>0.采用怎样的方法才能使装包的效益最大呢? * 考虑以下情况下的背包问题:n = 3,M = 20,(p0,p1,p2) = (25,24,15),(w0,w1,w2) = * (18,15,10).其中的4个可行解是 * (x0,x1,x2) w0x0 + w1x1 + w2x2 p0x0 + p1x1 + p2x2 * (1/2,1/3,1/4) 16.5 24.25 * (1,2/15,0) 20 28.2 * (0,2/3,1) 20 31 * (0,1,1/2) 20 31.5 * 在这4个可行解中第四个的效益值最大。 定理:如果 p1/w1>=p2/w2>=...>=pn/wn,则算法对于给定的背包问题实例生成一个最优解。 证明: * 设X= (x1,...,xn)是最优解。如果所有的xi = 1,显然这个解是最优解。于是,设j是使xj != 1 的最小下标。由算法可知,对于1<=i<=j * ,xi=1;对于 j<i<=n,xi =0;对于j, 0<=xj<1.如果X不是一个最优解,则必定存在一个可行解Y=(y1,...yn),使得 * piyi > pixi.不失 一般性,可以假定 wiyi =M.设k是使得yk!=xk的最小下标。显然,这样的k必定存在。由上面的假设,可以推得yk<xk. * 这可从3种可能发生的情况,即k<j,k=j,k>j分别得到证明: (1)若k<j,则xk = 1.因yk!=xk,从而yk<xk. (2)若k=j ,由于 ∑wjxi = * M,且对1<=i<j,有xi=yi=1,而对j<i<=n,有xi =0.若yk>xk,显然有∑wiyi>M,与Y是可行解矛盾。若yk=xk * ,与假设yk!=xk矛盾,故yk<xk. (3)若k>j,则∑wiyi>m,这是不可能的。 * 现在,假定把yk增加到xk,那么必须从(yk+1,...,yn)中减去同样多的量,使得所有的总容量仍是M。这导致一个新的解Z=(z1,...zn), * 其中,zi = xi , 1<=i<=k,并且∑(k<i<=n)wi(yi-zi)= wk(zk-yk).因此,对于Z有 * ∑pizi = ∑piyi + (zk-yk)wkpk/wk-∑(k<i<=n)(yi-zi)wipi/wi * >= ∑piyi +[(zk-yk)wk-∑(yi-zi)wi]pk/wk * = ∑piyi * 如果∑pizi>∑piyi,则Y不可能是最优解。如果这两个和数相等,同时Z=X,则X就是最优解;若Z!=X,则重复上面的讨论,或者证明Y不是最 * 优解,或者把Y转换成X,从而证明了X也是最优解。证毕。 */ public class BinSerch { //对数组buf降序排列 同时 index 数组记录排序前的数组索引 public static void order(double[] buf, int[] index) { int count = 1; while (count++ < buf.length) { for (int i = buf.length - 1; i > 0; i--) { if (buf[i] > buf[i - 1]) { double temp = buf[i]; buf[i] = buf[i - 1]; buf[i - 1] = temp; int temp1 = index[i]; index[i] = index[i - 1]; index[i - 1] = temp1; } else continue; } } for (int j = 0; j < buf.length; j++) { System.out.print(buf[j] + "(" + j + ")"); } System.out.println(); } public static void main(String[] args) { //对上述背包问题求最优解 int n = 3; //物品数量 double[] p = { 25, 24, 15 }; //效益数组 double[] w = { 18, 15, 10 }; //重量数组 double[] pw = { p[0] / w[0], p[1] / w[1], p[2] / w[2] }; //选取pi/wi为其量度标准 int[] index = { 0, 1, 2 }; //数组索引 double[] record = new double[3];//记录排序前数组下标 double cu = 20; //背包剩余容量 order(pw, index); //排序 //背包问题贪心算法 int i = 0; for (i = 0; i < n; i++) { if (w[index[i]] < cu) { record[i] = 1; cu = cu - w[index[i]]; } else { break; } } if (i < n) { record[i] = cu / w[index[i]]; } for (int j = 0; j < record.length; j++) { System.out.print("x" + j + "\t"); System.out.print(record[j] + "\t"); } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值