题目描述:
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [ [1, 0, 1], [0, -2, 3] ] k = 2
The answer is 2
. Because the sum of rectangle [[0, 1], [-2, 3]]
is 2 and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns?
但是其实这个题只要把每个矩形的面积求出来就行了。
用sums[i][j]表示从( 0,0 )直到(i,j)范围内的矩阵和。
代码如下:
public class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
int row=matrix.length;
int col=matrix[0].length;
int[][] sums=new int[row][col];
sums[0][0]=matrix[0][0];
for (int i = 1; i < row; i++) {
sums[i][0]=sums[i-1][0]+matrix[i][0];
}
for (int j = 1; j < col; j++) {
sums[0][j]=sums[0][j-1]+matrix[0][j];
}
for (int i = 1; i <row; i++) {
for (int j = 1; j < col; j++) {
sums[i][j]=sums[i-1][j]+sums[i][j-1]-sums[i-1][j-1]+matrix[i][j];
}
}
int ans=Integer.MIN_VALUE;
for (int si = 0; si < row; si++) {
for (int sj = 0; sj < col; sj++) {
for (int ei = si; ei < row; ei++) {
for (int ej = sj; ej < col; ej++) {
int test=0;
if (si==0&&sj==0) {
test=sums[ei][ej];
}else if(si==0){
test=sums[ei][ej]-sums[ei][sj-1];
}else if(sj==0){
test=sums[ei][ej]-sums[si-1][ej];
}else{
test=sums[ei][ej]-sums[si-1][ej]-sums[ei][sj-1]+sums[si-1][sj-1];
}
if (test<=k&&test>ans) {
ans=test;
}
}
}
}
}
return ans;
}
}