[T2L]图文生成Text To Image学习以及部分经典论文简介

本文概述了计算代价高昂的生成模型,重点关注GAN(如AttnGAN和DM-GAN)和VAE在图像生成中的应用,以及Text2Image技术的改进。讨论了注意力机制的发展和Transformer引入后的新模型,如CogView和DALL-E,以及Diffusion模型(DDPM和GLIDE)及其与预训练技术(如CLIP)的结合,最后提及了LLM-GPT4的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

计算代价高昂的生成模型

生成模型:GAN和VAE

生成对抗网络GAN​

变分自编码器VAE​

基于GAN和VAE的图像生成模型的发展​

第一篇Text2Image的文章​

改变文本token输入模型的方式​

注意力机制的发展

AttnGAN

DM-GAN

DF-GAN​

对比学习

improved DM_GAN

​编辑​编辑

XMC_GAN

Transformer诞生之后

CogView​

DALL-E​

Diffusion model

DDPM​

Diffusion model的类型​

GLIDE​

预训练-CLIP​

LLM-GPT4​


计算代价高昂的生成模型


生成模型:GAN和VAE

  • 生成对抗网络GAN

  • 变分自编码器VAE


基于GAN和VAE的图像生成模型的发展

  • 第一篇Text2Image的文章

  • 改变文本token输入模型的方式


注意力机制的发展

  • AttnGAN

  • DM-GAN

  • DF-GAN


对比学习

  • Improved DM_GAN

  • XMC_GAN


Transformer诞生之后

  • CogView

  • DALL-E

Diffusion model

  • DDPM

  • Diffusion model的类型

  • GLIDE


预训练-CLIP


LLM-GPT4

未完待续...


学习相关知识的过程中想着看都看了不如收集一下,制作了这个PPT。图片底下是相关顶会论文

如有侵权请联系我删除。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值