Rocketmq之消息队列分配策略算法实现的源码分析

本文深入分析Rocketmq的五种消息队列分配策略:平均分配、环形分配、手动配置、机房分配和一致性哈希分配。详细解读了每种策略的源码实现,并通过实例说明其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Rocketmq之消息队列分配策略算法实现的源码分析

本文中包含下面的内容

  • 平均分配策略(默认)(AllocateMessageQueueAveragely)
  • 环形分配策略(AllocateMessageQueueAveragelyByCircle)
  • 手动配置分配策略(AllocateMessageQueueByConfig)
  • 机房分配策略(AllocateMessageQueueByMachineRoom)
  • 一致性哈希分配策略(AllocateMessageQueueConsistentHash)

一、平均分配策略(AllocateMessageQueueAveragely)

下面是Rocketmq中 AllocateMessageQueueAveragely 的源码

public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,List<String> cidAll) {
        //省略参数校验、当前消费者id是否存在的校验
        //走到下面的代码, 说明参数校验通过
        int index = cidAll.indexOf(currentCID);
        int mod = mqAll.size() % cidAll.size();
        int averageSize =
            mqAll.size() <= cidAll.size() ? 1 : (mod > 0 && index < mod ? mqAll.size() / cidAll.size()
                + 1 : mqAll.size() / cidAll.size());
        int startIndex = (mod > 0 && index < mod) ? index * averageSize : index * averageSize + mod;
        int range = Math.min(averageSize, mqAll.size() - startIndex);
        for (int i = 0; i < range; i++) {
            result.add(mqAll.get((startIndex + i) % mqAll.size()));
        }
        return result;
    }

对代码分析如下:

  • 第4行, 计算当前消费者在消费者集合(List<String> cidAll)中下标的位置(index)
  • 第5行, 计算当前消息队列(Message Queue)中的消息是否能被消费者集合(cidAll)平均消费掉
  • 第6-8行, 计算当前消费者消费的平均数量
    • mqAll.size() <= cidAll.size() ? 1 如果消费者的数量 >= 消息的数量, 当前消费者消耗的消息数量为1
    • mod > 0 && index < mod ? mqAll.size() / cidAll.size() + 1 : mqAll.size() / cidAll.size() 如果消息不能被消费者平均消费掉, 且当前消费者在消费者集合中的下标(index) < 平均消费后的余数mod , 则当前消费者消费的数量为 mqAll.size() / cidAll.size() + 1 , 否则是 mqAll.siz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值