Rocketmq之消息队列分配策略算法实现的源码分析
本文中包含下面的内容
- 平均分配策略(默认)(AllocateMessageQueueAveragely)
- 环形分配策略(AllocateMessageQueueAveragelyByCircle)
- 手动配置分配策略(AllocateMessageQueueByConfig)
- 机房分配策略(AllocateMessageQueueByMachineRoom)
- 一致性哈希分配策略(AllocateMessageQueueConsistentHash)
一、平均分配策略(AllocateMessageQueueAveragely)
下面是Rocketmq中 AllocateMessageQueueAveragely 的源码
public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll,List<String> cidAll) {
//省略参数校验、当前消费者id是否存在的校验
//走到下面的代码, 说明参数校验通过
int index = cidAll.indexOf(currentCID);
int mod = mqAll.size() % cidAll.size();
int averageSize =
mqAll.size() <= cidAll.size() ? 1 : (mod > 0 && index < mod ? mqAll.size() / cidAll.size()
+ 1 : mqAll.size() / cidAll.size());
int startIndex = (mod > 0 && index < mod) ? index * averageSize : index * averageSize + mod;
int range = Math.min(averageSize, mqAll.size() - startIndex);
for (int i = 0; i < range; i++) {
result.add(mqAll.get((startIndex + i) % mqAll.size()));
}
return result;
}
对代码分析如下:
- 第4行, 计算当前消费者在消费者集合(List<String> cidAll)中下标的位置(index)
- 第5行, 计算当前消息队列(Message Queue)中的消息是否能被消费者集合(cidAll)平均消费掉
- 第6-8行, 计算当前消费者消费的平均数量
- mqAll.size() <= cidAll.size() ? 1 如果消费者的数量 >= 消息的数量, 当前消费者消耗的消息数量为1
- mod > 0 && index < mod ? mqAll.size() / cidAll.size() + 1 : mqAll.size() / cidAll.size() 如果消息不能被消费者平均消费掉, 且当前消费者在消费者集合中的下标(index) < 平均消费后的余数mod , 则当前消费者消费的数量为 mqAll.size() / cidAll.size() + 1 , 否则是 mqAll.siz