近年的acm竞赛中,数学期望(离散随机变量的一切可能值工与对应的概率P的乘积之和称为数学期望)问题常有涉及,在以前也常让本人感到很头疼,近来突然开窍,掌握了基本的分析方法,希望对大家有帮助。写得浅薄,可能数学上不够严谨,只供理解。
首先,来看下期望有啥基本的公式。
第二条式子是今天的主角,他表明了期望有线性的性质,简单理解就是期望之间可根据关系,简单运算(不严谨的理解)。 这就为我们解决一个期望问题,不断转化为解决另外的期望问题,最终转化到一个已知的期望上。
举一个求期望最简单的例子,见下图。
假设有个人在 1号节点处,每一分钟他会缘着边随机走到一个节点或者在原地停留,问他走到4号节点需要平均几分钟?
这是个简单的期望问题,我们用Ei(i=1,2,3,4) 表示从i号节点走到4号节点的数学期望值。根据题意对1号节点有
E1=(1/3)*E1+(1/3)*E2+(1/3)*E3+1 ①
表示 他下一分钟可以走到2或者3或在原地1,每个可能概率是1/3 ,注意是下一分钟,故要加上1.
同理我们对节点2,3同样可以列出
E2=(1/3)*E1+(1/3)*E2+(1/3)*E4+1 ②
E3=(1/3)*E1+(1/3)*E3+(1/3)*E4+1 ③
那E4等于多少呢? 很明显E4=0 ④,因为他就是要到点4
这样上面1234式其实就是组成了一组方程组,解方程组就可得出E1!!,用高斯消元,复杂度是O(n^3)
从上述例子,我们可总结出如何解决期望类问题,根据题意,表示出各个状态的期望(上例的Ei,1234),根据概率公式,列出期望之间的方程,解方程即可。
下面看用上述思路如何解决一道题(poj2096)
原题见附件1。
题意简述: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcomponent,问他找到所有的bugs和subcomponents的期望次数。
我们用E(i,j)表示他找到了i个bugs和j个subcomponents,离找到n个bugs和s个subcomponents还需要的期望次数,这样要求的就是E(0,0),而E(n,s)=0,对任意的E(i,j),1次查找4种情况,没发现任何新的bugs和subcomponents,发现一个新的bug,发现一个新的subcomponent,同时发现一个新的bug和subcomponent,用概率公式可得:
E(i,j)=1+(i*j/n/s)*E(i,j)+(i*(s-j)/n/s)E(i,j+1)+
((n-i)*j/n/s)*E(i+1,j)+(n-i)*(s-j)/n/s*E(i+1,j+1);
这样根据边界就可解出所有的E(i,j),注意因为当我们找到n个bugs和s个subcomponents就结束,对i>n||j>s均无解的情况,并非期望是0.(数学上常见问题,0和不存在的区别)
那这题是否也是要用高斯消元呢? 用高斯消元得话复杂度是O(n^3),达到10^18 根本是不可解的!!
但其实,注意观察方程,当我们要解E(i,j)的话就需要E(i+1,j),E(I,j+1),E(i+1,j+1), 一开始已知E(n,s),那其实只要我们从高往低一个个解出I,j就可以了! 即可根据递推式解出所有的E(I,j) 复杂度是O(n),10^6 ,完美解决。程序见附件2
从上面这道题,我们再次看到了解决期望问题的思路,而且是用到了递推解决问题,其实可递推的原因,当我们把各个状态当成是一个个节点时,概率关系为有向边,我们可看到,可递推的问题其实就是这个关系图是无环的!!那必须要用方程组解决的问题其实就是存在环!!!! 而且我还要指出的是用高斯消元的时候,要注意误差的问题,最好把式子适当的增大,避免解小数,否则误差太大,估计也会卡题。
本文到此结束,简单讲解了期望类问题的解决思路,更加深入的学习可参考wc2009两篇的论文,希望能帮到大家!!
Kicd
2009.7.31