机器学习算法笔记
文章平均质量分 92
code_mryxj
这个作者很懒,什么都没留下…
展开
-
监督学习之线性回归解法:梯度下降及正规方程
线性回归解法:梯度下降及正规方程回归问题回归问题(regression)是属于机器学习里面监督学习(supervised learning)的部分,它利用已标记好数据去学习得到一个假设函数(又称目标函数),并用来预测新的测试数据结果。如果预测的数据是连续出现我们称为线性回归(linear regression),它也常常应用于预测一个连续值的结果的场景。而如果预测值是离散出现,我们就成...原创 2018-09-07 19:10:16 · 549 阅读 · 0 评论 -
神经网络的反向传播公式的推导
神经网络的反向传播公式的推导前言:早该开始入坑CNN,RNN的博主总觉得要先能用python加numpy手撸一个神经网络,才能更好理解其他神经网络的原理(强迫症)。于是…这一拖就是快两月(懒),最近填坑的时候才发现以为自己很通透的反向传播过程,写起代码推起来就…。光看西瓜书觉得反向传播就是损失函数反向对每一层参数求偏导的过程。但西瓜书推导仅在三层网络上,各层参数符号定义也不统一(博主太笨)。...原创 2018-11-28 01:31:55 · 1917 阅读 · 5 评论 -
神经网络激活函数的推荐-ReLU
前言:写Tensorflow实验发现,使用Relu激活函数的模型笔Sigmoid要优化速度快,并且结果更好一点。找了几个很好的解释,收藏呢!1,2,3,感谢他们付出。总结就是:以后激活函数都用Relu。正文下面正文内容转自博客 ReLU为什么比Sigmoid效果好 附:双曲函数类似于常见的(也叫圆函数的)三角函数。基本双曲函数是双曲正弦"sinh",双曲余弦...转载 2019-01-04 17:07:31 · 607 阅读 · 0 评论 -
吴恩达《卷积神经网络》第一周笔记
第一周 卷积神经网络1.计算视觉(Computer vision)Deep learning在计算视觉的研究可以启发很多领域,包括语音识别等计算视觉任务:图片分类(Image classification)目标检测(Object detection)风格迁移(Neural style transfer)计算机视觉面临输入数据大挑战带来两个问题,一是神经网络复杂,参数多...原创 2019-02-19 16:32:14 · 498 阅读 · 0 评论 -
朴素贝叶斯原理及Python实战
原理朴素贝叶斯(Naive Bayes)法是基于贝叶斯定理和特征条件独立的假设(这是一个较强的假设,虽然使得方法变得简单,但有时会牺牲一定的分类准确率)的分类方法,属于生成(Generative Approach)方法的一种。为什么说它属于生成方法呢?它通过训练数据集学习联合概率分布p(X,Y)p(X,Y)p(X,Y) , 所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似...原创 2019-06-17 22:18:33 · 405 阅读 · 0 评论