- 博客(4)
- 资源 (4)
- 收藏
- 关注
原创 Part2-深度学习实践-高级的深度学习最佳实践
高级的深度学习最佳实践????函数式API简单示例多输入模型多输出模型残差连接使用keras回调函数ModelCheckpoint 与 EarlyStopping 回调函数ReduceLROnPlateau 回调函数 Sequential 模型假设,网络只有一个输入和一个输出,而且网络是层的线性堆叠。有些网络需要多个独立的输入,有些网络则需要多个输出,而有些网络在层与层之间具有内部分支,这使得网络看起来像是层构成的图(graph),而不是层的线性堆叠。 函数式API 简单示例 下面是最简单的示例,并列展示一
2021-04-12 20:40:56 259
原创 Part2-深度学习实践-深度学习用于文本和序列
????深度学习用于文本和序列????前言????使用词嵌入????利用embedding层学习词嵌入????使用预训练的词嵌入????循环神经网络的高级用法????循环 dropout????堆叠循环层????双向循环层???? 前言???? 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet)。 深度学习模型不会接收原始文本作为输入,它只能处理数值张量。文本向量化(vectorize)是指将文本转换为数值张量
2021-04-11 23:21:19 327
原创 Part2-深度学习实践-深度学习用于计算机视觉
????深度学习实践-深度学习用于计算机视觉????1.卷积神经网络简介卷积运算边界效应与填充理解卷积步幅最大池化运算2.使用预训练的卷积神经网络特征提取(feature extraction)微调模型(fine-tuning) 1.卷积神经网络简介 下面是一个简单的小型卷积神经网络,它是 Conv2D 层和 MaxPooling2D 层的堆叠。卷积神经网络的接收形状为(image_height, image_width, image_channels),每个 Conv2D 层和 MaxPooling2D
2021-04-11 10:08:08 378
原创 Part1-深度学习基础
1.神经网络的核心组件是层(layer),可以将它看作是数据过滤器,进去一些数据,出来的数据更有用,深度学习就是将简单的层连接起来,从而形成渐进的数据蒸馏。 2.编译 编译语句如下: network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) 编译步骤的三个参数: 参数 意义 损失函数(loss function) 网络如何衡量在训练数据上的性能,即网络如何朝着正
2021-04-09 09:17:05 987 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人