题目的意思就是给出m,p ,a ,b;
m是数字的个数.
a确定每个数字的范围. -xi ; a 大于0;
b确定所有数据的和;x1 + x2 +...+xm = b*
现在求每个数字的p次方和最大是多少...p为偶数.
因为p为偶数,所以我们不用在意正负号,尽量去选绝对值大的,就是正数取根号a,负数取-根号a分之一.
现在来讨论怎么取这些值. 我们用逆推的办法.
全加完之后是b*根号a ,这个数比根号a大.那么我们就假设前一个加的数是根号a.并把结果逆推回还没加这个数的时候,即 b*根号a - 根号a;把根号啊数量加一
如果现在结果比根号a小.我们家假设前一个是-根号a分之一,然后数量也加一.
到最后一个是就不能这么判断,应该是和结果差多少,它就是多少.
然后算结果.
不过这样算精度队丢失.所有我们把等式两边都乘以根号a,那么结果就是a*b,每个数的范围都变成-1 到 a ;
输出最后结果时,把根号a消掉即可;;
AC代码:
#include<stdio.h>
#include<cmath>
const int M = 2000 + 5;
double num[M];
double m,p;
double a,b;
int main () {
double Min;
double Max;
double tar;
while (~scanf("%lf%lf%lf%lf",&m,&p,&a,&b)) {
int h = 0;
int l = 0;
double sum = 0 ;
double temp = sqrt(a);
double temp2 = -1.0 / sqrt(a);
tar = a * b ;
for (int i = 0 ; i < m - 1 ;i++) {
if (tar >= a) {
h++;
tar -= a;
}
else {
l++;
tar += 1;
}
}
sum += h * (pow (temp , p));
sum += l * (pow (temp2 , p));
sum += pow(tar / temp, p);
printf("%d\n",(int)(sum + 0.5));
}
}