自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

转载 RobotFramework 网易云课堂视频教程笔记(转载)

在网易云课堂上学习了重定向科技出品的“RF教程”,手懒没有做笔记,看着别人写好的顺手转载一下,方便以后使用;https://www.jianshu.com/p/85243c15d59c

2019-09-12 19:23:16 549

转载 cmd界面下输入pip显示Fatal error in launcher解决办法

https://jingyan.baidu.com/article/ad310e800d48361849f49ef6.html

2019-08-29 19:17:44 1296

原创 主流的比较流行的python量化开源框架

博客简略介绍了比较流行的量化kaiy开源框架,后边附了各个包github代码的连接,,满满的干货,链接如下: https://www.jianshu.com/p/1658f319bfdc

2018-07-30 11:33:05 3429

原创 多因子系列研报对比

做多因子之前大致看了券商写的一些研报,这是之前写过的报告总结,贴出来和大家分享一下。       我先总体看了一下各个券商写的多因子研报,发现多因子需要研究的内容很多,券商根据研究进展分期发布,时间跨度很大。我想的是跟着一个券商的多因子系列研报做下去,目前找到了3家比较完整的更新出来的研报:国泰君安、华泰证券、光大证券,前两个就是吴坤总结过的研报。下边是这3个券商多因子系列研报的题目:国泰...

2018-07-20 11:40:30 3114 3

原创 结构化多因子模型

结构化风险因子模型利用一组共同因子和一个仅与该股票有关的特质因子解释股票的收益率,并利用共同因子和特质因子的波动来解释股票收益率的波动。结构化多因子风险模型的优势在于,通过识别重要的因子,可以降低问题的规模,只要因子个数不变,即使股票组合的数量发生变化,处理问题的复杂度也不会发生变化。结构化多因子风险模型首先对收益率进行简单的线性分解,分解方程中包含四个组成部分:股票收益率、因子暴露、因子收益...

2018-07-20 11:32:58 2284

原创 matplotlib画图之plt

看到一个讲的很详细得matploylib画图的博客,因为不是CSDN的平台,所以不能转载,就把连接贴出来吧:http://blog.sciencenet.cn/blog-251664-800766.html

2018-07-18 16:17:16 236

原创 多因子选股分层回测

接之前的显著性分析和IC值计算进行显著性和有效性的分析以后,可以初步判断因子对股票的收益是否有显著的影响;但是不能判断单调性,例如,某因子值排名在中间 1/3的个股表现比前 1/3 和后 1/3 的个股表现要好;但是分层回测法是可以确定因子单调性的。分层回测法逻辑简单,结果清晰,操作方便,并且具有能区分因子单调性的独特优势,是接受度非常高的一种单因子测试手段。分层回测的步骤为:测试模型...

2018-07-18 10:49:14 9593 2

原创 金融量化alpha和beta值的意义

1、年化收益率(Annualized Returns):表示投资期限为一年的预期收益率 Pend=策略最终总资产,Pstart=策略初始总资产,n=回测交易日数量2、基准年化收益率(Benchmark Returns):表示参考标准年化收益率。3、贝塔(Beta):表示投资的系统性风险,反映了策略对大盘变化的敏感性。例如,一个策略的Beta为1.3,则大盘涨1%的时候,...

2018-07-17 11:44:16 47225 3

原创 金融量化之华泰多因子估值类显著性和IC值计算

https://blog.csdn.net/m0_37777649/article/details/74937242比较全面的讲解了T检验,包含单边和双边的t分位数表 https://blog.csdn.net/xuxiatian/article/details/55002412题目是:使用python统计建模和计量经济学工具包Statsmodels进行线性回归,整体上讲述了Sta...

2018-07-13 12:15:38 15563

原创 t检验

t检验是一种假设检验,运用反证法的思想,证明原假设不成立,从而接受备择假设。原假设和备择假设选择的条件:1 原假设应该受到保护,不应轻易被拒绝;2 备择假设是检验者所希望的结果3 等号永远出现在原假设中假设检验第一步:判断样本是不是小概率事件。小概率事件时几乎不可能发生的,因此,只要出现小概率事件,就认为原假设是错误的。但是,只要小概率事件的概率不为0,那么就是有可能发生的,我们直接拒绝原假设可能...

2018-07-13 12:12:32 3040

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除