Python数据挖掘

import numpy as np
import pandas as pd

stock_rate = np.random.normal(size=(600, 1))
date = pd.date_range(start = “2021-01-01”, periods=600, freq=“D”)
stock_rate = pd.DataFrame(stock_rate, index=date, columns=[“涨跌幅”])
https://www.yingbatiyu.com/

已标记关键词 清除标记
相关推荐
<p> <span> </span> </p> <p class="ql-long-32569780"> <span style="font-weight:bolder;font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"><span style="background-color:#FFE500;">【为什么学习数据挖掘】</span></span> </p> <p class="ql-long-32569780">       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。 </p> <p class="ql-long-32569780"> <br /> </p> <p class="ql-long-32569780">       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 </p> <p> <br /> </p> <p> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFE500;font-weight:700;"><strong>【超实用的课程内容】</strong></span><span style="background-color:#FFE500;"><strong></strong></span> </p> <p> <span>     本课程为</span>Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。 </p> <p> <br /> </p> <p> <strong>本课程分为三大部分:</strong><br /> 基础知识篇:主要讲解数据挖掘这项技能的基本工作流程和介绍和入门必须的基本技能Python语言的入门,带领大家了解数据挖掘的常见操作和基础知识。 </p> <p> 数据采集篇:学习如何解决数据挖掘的数据来源问题,读取各类型不同的数据包括CSV,excel,MySQL进行数据采集的交互。 </p> <p> 数据探索篇:本篇主要解决数据的预处理保证数据的质量并用常见数据挖掘算法进行特征提取,分析数据背后隐含的信息。 </p> <p> <br /> </p> <p> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFE500;"><span style="font-weight:bolder;background-color:#FFE500;">【报名须知】</span></span><br /> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">课程采取录播模式,课程永久有效,可无限次观看</span><br /> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化</span><br /> <br /> <br /> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFE500;"><span style="background-color:#FFE500;"><strong>【如何开始学习?】</strong></span></span><br /> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">PC端:报名成功后可以直接进入课程学习</span><br /> <span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">移动端:下载CSDN学院或CSDN</span> </p>
<p> <span> </span> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span style="color:#E53333;">92讲视频课+16大项目实战+课件源</span><span style="color:#E53333;">码+讲师社群闭门分享会</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-14 ql-author-32569780"><span style="color:#337FE5;font-size:14px;">为什么学习数据分析?</span></strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-14 ql-author-32569780"><span style="color:#337FE5;"><br /> </span></strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;">       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。 </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <br /> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;">       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 </p> <p style="font-size:11pt;color:#494949;">  <span style="font-size:11pt;"> </span> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span style="color:#337FE5;"><strong>本课程共包含五大模块:</strong></span> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-14 ql-author-32569780"><span style="color:#337FE5;"><br /> </span></strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">一、先导篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">二、基础篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。 </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">三、数据采集篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">四、分析工具篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">五、算法篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。</span> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006110958102443.jpg" /> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页