POJ 1149 PIGS

题意

m 个猪圈,n个顾客 依次 购买 bi 头猪,会到某些猪圈买。
每次交易过程如下:
1. 顾客开某几个猪圈的门
2. 卖猪
3. 任意分配这几个猪圈的猪的数量
4. 锁门
猪圈可容纳的猪的数量没有限制
问最多能卖出多少猪?

题解

注意到此题有 依次 ,这个限制
而基于 依次 的建图方法,与两个元素是否 相邻 很有关系。

建图如下:
1. s->第一个开某个猪圈的顾客连边,容量为开始猪圈的猪数:(s, u, A[i])
2. 若前后顾客之间有猪圈的重合部分,则连边:(u, v, INF)
3. 每个顾客->t,容量为需求量:(u, t, Need[i])

此时,一条流的意义代表一头猪的销售历程。
事实上,猪圈只是一个载体,在猪圈里交换猪的本质是要满足以后某一个顾客的需求。
所以交换猪的过程可以看做:
1. 顾客A用钥匙开门
2. 顾客A等待下一个与他有重合猪圈的人的到来(注意,期间的人与A是不 相关 的)
3. 顾客A把猪提供给顾客B,并把重合猪圈的钥匙交给B

因为顾客A这个“锁门”可以等到与其 相关 的人来的时候,再进行。在顾客A看来,他与B是 相邻

窝巢,n,m读反了qwq。更毒的是:poj上交,这题我写多组数据交上去RE,单组数据WA。。。最后发现的确只有一组。。。弄得我已为是数组开小了。。。

code

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <vector>

const int INF = 0x3f3f3f3f;
const int MAXN = 20010;
const int MAXM = 100010;

struct Dinic {
    int n, tot, s, t;
    int st[MAXN], st0[MAXN];
    int lk[MAXM << 1], b[MAXM << 1], f[MAXM << 1]; bool del[MAXM << 1];
    int Q[MAXN]; int l, r;
    int d[MAXN];

    void init() {
        memset(st, 0, sizeof st); tot = 1;
    }
    void addedge(int u, int v, int w) {
        lk[++ tot] = st[u]; b[tot] = v; f[tot] = w; del[tot] = 0; st[u] = tot;
        lk[++ tot] = st[v]; b[tot] = u; f[tot] = 0; del[tot] = 0; st[v] = tot;
    }
    bool BFS() {
        memset(d, 0, sizeof d);
        l = r = 0;
        d[ Q[r ++] = s ] = 1;
        for (; l != r; ++ l) {
            int u = Q[l];
            for (int i = st[u]; i; i = lk[i]) if (!del[i]) {
                int v = b[i];
                if (f[i] && !d[v]) {
                    d[v] = d[u] + 1;
                    Q[r ++] = v;
                }
            }
        }
        return d[t];
    }
    int DFS(int u, int a) {
        if (u == t || a == 0) return a;
        int flow = 0, df;
        for (int& i = st0[u]; i; i = lk[i]) if (!del[i]) {
            int v = b[i];
            if (d[v] == d[u] + 1 && (df = DFS(v, std::min(a, f[i])))) {
                f[i] -= df; f[i^1] += df;
                a -= df; flow += df;

                if (a == 0) break;
            }
        }
        return flow;
    }
    void solve(int s, int t, int& flow) {
        this->s = s; this->t = t;
        while (BFS()) {
            memcpy(st0, st, sizeof st0);
            flow += DFS(s, INF);
        }
    }
    void dt(int e) {
        del[e] = del[e^1] = 1;
    }
    void aug(int s, int t, int& flow) {
        this->s = s; this->t = t;
        if (BFS()) {
            memcpy(st0, st, sizeof st0);
            flow += DFS(s, 1);
        }
    }
} solver;

const int maxm = 10010;

int n, m, s, t;
int a[maxm];
int lst[maxm];

bool solve() {
    if (!(scanf("%d%d", &m, &n) == 2)) return 0;
    s = 0, t = n+1;
    solver.init();

    for (int i = 1; i <= m; ++ i) lst[i] = s;
    for (int i = 1; i <= m; ++ i) scanf("%d", &a[i]);
    for (int i = 1; i <= n; ++ i) {
        int y, x; scanf("%d", &y);
        while (y --) {
            scanf("%d", &x);
            solver.addedge(lst[x], i, (lst[x] == s ? a[x] : INF));
            lst[x] = i;
        }
        scanf("%d", &x);
        solver.addedge(i, t, x);
    }
    int flow = 0;
    solver.solve(s, t, flow);
    printf("%d\n", flow);
    return 1;
}

int main() {
//  freopen("poj1149.in", "r", stdin);

    while (solve());

//  for(;;);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值