POJ 1637 Sightseeing tour

题意

给一个混合图(有向边、无向边均有),问是否存在欧拉回路

题解

经典题。
参见黑书p324,两种解法。
第一种是把边视为一类点,原来的点视为另一类点,构建二分图,进一步构建图
这里总结一下第二种做法:
基本定理是:对一个有向图,当且仅当其基图连通且每个点入度=出度。
先只看有向边,统计每个点入度和为 In[i] ,出度和为 Out[i]

然后只看无向边,对所有无向边任意定向。
我们要构一个网络,使得最后有流量的边不变,无流量的边反向。

x In[x] +有流量的入边数量+无流量的出边数量= Out[x] +有流量的出边数量+无流量的入边数量

有流量边的入边的数量 ×2 +出边总容量= Out[x]In[x] +有流量边的出边的数量 ×2 +入边总容量
有流量边的入边的数量 ×2 =有流量边的出边的数量 ×2 + Out[x]In[x] +入边总容量-出边总容量
注意这里入、出边总容量为无向图下,任意定向后的出边总数量,记为 In2[x],Out2[x]

有流量边的入边的数量= (Out[x]In[x]Out2[x]+In2[x])/2 +有流量边的出边的数量
kx=Out[x]In[x]Out2[x]+In2[x] 不为偶数则无解。
所以我们按如下建图:
1. 当 kx>0 ,建 (x,t,kx/2)
2. 当 kx<0 ,建 (s,x,kx/2)
3. 点之间按照定向后的边,建 (u,v,1)
若网络有可行流,即流量平衡方程能满足,则有解,否则无解。

#include <algorithm>
#include <bitset>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <vector>

const int INF = 0x3f3f3f3f;
const int MAXN = 210;
const int MAXM = 2010;

struct Dinic {
    int n, tot, s, t;
    int st[MAXN], st0[MAXN];
    int lk[MAXM << 1], b[MAXM << 1], f[MAXM << 1]; bool del[MAXM << 1];
    int Q[MAXN]; int l, r;
    int d[MAXN];
    int idx[MAXN][MAXN];
    int su[MAXN];

    void init() {
        memset(st, 0, sizeof st); tot = 1;
        memset(su, 0, sizeof su);
        memset(idx, 0, sizeof idx);
    }

    void addedge(int u, int v, int w) {
//      printf("%d %d %d\n", u, v, w);
        if (!idx[u][v]) {
            lk[++ tot] = st[u]; b[tot] = v; f[tot] = w; del[tot] = 0; st[u] = tot;
            lk[++ tot] = st[v]; b[tot] = u; f[tot] = 0; del[tot] = 0; st[v] = tot;
            idx[u][v] = tot-1; idx[v][u] = tot;
        } else {
            f[idx[u][v]] += w;
        }
        su[u] += w; su[v] += w;
    }
    bool BFS() {
        memset(d, 0, sizeof d);
        l = r = 0;
        d[ Q[r ++] = s ] = 1;
        for (; l != r; ++ l) {
            int u = Q[l];
            for (int i = st[u]; i; i = lk[i]) if (!del[i]) {
                int v = b[i];
                if (f[i] && !d[v]) {
                    d[v] = d[u] + 1;
                    Q[r ++] = v;
                }
            }
        }
        return d[t];
    }
    int DFS(int u, int a) {
        if (u == t || a == 0) return a;
        int flow = 0, df;
        for (int& i = st0[u]; i; i = lk[i]) if (!del[i]) {
            int v = b[i];
            if (d[v] == d[u] + 1 && (df = DFS(v, std::min(a, f[i])))) {
                f[i] -= df; f[i^1] += df;
                a -= df; flow += df;

                if (a == 0) break;
            }
        }
        return flow;
    }
    void solve(int s, int t, int& flow) {
        this->s = s; this->t = t;
        while (BFS()) {
            memcpy(st0, st, sizeof st0);
            flow += DFS(s, INF);
        }
    }
    void dt(int e) {
        del[e] = del[e^1] = 1;
    }
    void aug(int s, int t, int& flow) {
        this->s = s; this->t = t;
        if (BFS()) {
            memcpy(st0, st, sizeof st0);
            flow += DFS(s, 1);
        }
    }
    int flow(int u, int v) {
        return f[idx[u][v]^1];
    }
    int cap(int u) {
        return su[u];
    }
} solver;

const int maxn = 210;

int n, m, s, t;
int k[maxn];

void solve() {
    scanf("%d%d", &n, &m);
    s = 0, t = n+1;

    solver.init();
    memset(k, 0, sizeof k);
    for (int i = 1; i <= m; ++ i) {
        int u, v, w; scanf("%d%d%d", &u, &v, &w);
        if (w == 1) {
            ++ k[u]; -- k[v];
        } else {
            -- k[u]; ++ k[v];
            solver.addedge(u, v, 1);
        }
    }
    for (int u = 1; u <= n; ++ u) {
        if (k[u]%2 != 0) { puts("impossible"); return; }
        if (k[u] > 0)
            solver.addedge(u, t, k[u]/2);
        else if (k[u] < 0)
            solver.addedge(s, u, -k[u]/2);
    }

    int flow = 0;
    solver.solve(s, t, flow);
    puts(flow == solver.cap(s) ? "possible" : "impossible");
}

int main() {
//  freopen("poj1637.in", "r", stdin);

    int kase; scanf("%d", &kase);
    while (kase --) solve();

//  for(;;);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值