SMOTE过采样技术原理与实现

SMOTE是一种用于解决分类问题中少数类样本不足的技术,通过合成新样本来平衡数据集。其原理是选取少数类样本及其k近邻,在它们之间随机生成新样本。该操作能有效应对非均衡数据。实现上,可以使用imblearn库的SMOTE API,调整参数如k_neighbors、kind和svm_estimator来控制采样过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.这种操作的原理是什么,目的是什么

目的是合成分类问题中的少数类样本,使数据达到平衡;

其中,样本数量过少的类别称为“少数类”。

原理和思想:合成的策略是对每个少数类样本a,从它的最近邻中随机选一个样本b,然后在a,b之间的连线上随机选一点作为新合成的少数类样本。

算法流程:

a.对于少数类中每一个样本a,以欧式距离为标准,计算它到少数类样本集中所有样本的距离,得到其k近邻;

b.根据样本不平衡比例,设置一个采样比例,以确定采样倍率N,对于每一个少数类样本a,从其k近邻中随机选择若干个样本,假设选择的近邻为b;

c.对于每一个随机选出的近邻b,分别与原样本a按照如下的公式构建新的样本c: c=a +rand(0,1)*|a-b|

2. 这种操作可以提取/反应出数据的什么性质

这种操作是对非均衡数据的近似填充,使得数据的不均衡得到平衡。

3.实现

API介绍

imblearn.over_sampling.SMOTE(
sampling_strategy = ‘auto’,
random_state = None, ## 随机器设定
k_neighbors = 5, ## 用相近的 5 个样本(中的一个&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值