蓝桥杯:连号区间数

连号区间数


    小明这些天一直在思考这样一个奇怪而有趣的问题:


    在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:


    如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。


    当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。


输入格式:
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。


输出格式:
输出一个整数,表示不同连号区间的数目。


示例:
用户输入:
4
3 2 4 1


程序应输出:
7


用户输入:
5
3 4 2 5 1


程序应输出:
9


解释:
第一个用例中,有7个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]

第二个用例中,有9个连号区间分别是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]

//我把这个代码粘到题里 值得了六十分  原因是运算超时 之后我将判断方法改了一下 但是改了还是超时。之后想了想每次输入后都比较出最大最小值 然后最大值减去最小值若差等于j-i 则这是连号区间,也就是将我后来改的的判断方法直接提到for循环里。


这个是60分的

import java.util.Arrays;
import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		int count=0;
		Scanner s=new Scanner(System.in);
		int n=s.nextInt();
		int a[]=new int[n];
		for(int i=0;i<n;i++){
			a[i]=s.nextInt();
		}
		for(int i=0;i<n;i++){
			for(int j=i;j<n;j++){
				int b[]=new int[j-i+1];
				for(int k=0;k<b.length;k++){
					b[k]=a[k+i];
				}
				if(judge(b)){
					count++;
				}
			}
		}
		System.out.println(count);
	}
	public static boolean judge(int a[]){
		Arrays.sort(a);
		if(a.length==1) return true;
		for(int i=0;i<a.length-1;i++){
			if(a[i+1]-a[i]!=1) return false;
		}
		return true;
	}
}

这是我改的判断方法:

public static boolean judge(int a[]){
		if(a.length==1) return true;
		Arrays.sort(a);		
		if(a[a.length-1]-a[0]==a.length-1) return true;
		return false;
	}


这是正确的方法:
import java.util.Scanner;

public class Main{
	public static void main(String[] args) {
		int count=0;
		Scanner s=new Scanner(System.in);
		int n=s.nextInt();
		if(n<1||n>50000)return;
		int a[]=new int[n];
		for(int i=0;i<n;i++){
			a[i]=s.nextInt();
			if(a[i]<1||a[i]>n)return;
		}
		for(int i=0;i<n;i++){
			int max=0,min=50001;
			for(int j=i;j<n;j++){
				if(a[j]<min)min=a[j];
				if(a[j]>max)max=a[j];
				if(max-min==j-i){
					count++;
				}
			}
		}
		System.out.println(count);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值