蓝桥杯PREV-9:大臣的旅费

问题描述

很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。

聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。

J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?

输入格式

输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数

城市从1开始依次编号,1号城市为首都。

接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)

每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。

输出格式

输出一个整数,表示大臣J最多花费的路费是多少。

样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式

大臣J从城市4到城市5要花费135的路费。


我用的dp做的 但是只得了75分 我的想法是 计算出两点之间的最短路径 求最大的路径

import java.util.Scanner;

public class Main{
	public static void main(String[] args) {
		int p=Integer.MAX_VALUE;
		int lf=0;
		Scanner s=new Scanner(System.in);
		int n=s.nextInt();
		int gra[][]=new int[n][n];
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){				
				gra[i][j]=p;
				if(i==j) 
					gra[i][j]=0;
			}
		}
		for(int i=0;i<n-1;i++){
			int a=s.nextInt();
			int b=s.nextInt();
			gra[a-1][b-1]=gra[b-1][a-1]=s.nextInt();
		}
		for(int k=0;k<n;k++){
			for(int i=0;i<n;i++){
				for(int j=0;j<n;j++){
					if(gra[i][j]!=0){
						if(gra[i][j]>gra[i][k]+gra[k][j]&&gra[i][k]!=p&&gra[k][j]!=p){
						    gra[i][j]=gra[i][k]+gra[k][j];
						}
					}
				}
			}
		}
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(lf<gra[i][j]&&gra[i][j]!=p)lf=gra[i][j];
			}
		}
		System.out.println((1+lf)*lf/2+lf*10);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值