此题加深了我对递归的应用和理解,值得一记
题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
解题思路
在前序序列中,第一个一定是根节点;
然后在中序序列中找到前序序列中的第一个数,这个数的序号记为k,k左边的序列则是该根节点的左子树的中序序列,k右边则是右子树的中序序列;
在前序序列中,序号1~k的序列则是该根节点左子树的前序序列,k之后的序列则是右子树的前序序列;
采用递归则可以重建该二叉树。
注意:当前序序列和中序序列长度为0时,tree = null;
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode tree;
if(pre.length == 0){
tree = null;
}else{
tree = new TreeNode(pre[0]);
int k = 0;
for(int i = 0; i < in.length; i++){
if(in[i] == tree.val){
k = i;
}
}
int[] preLeft = new int[k];
int[] preRight = new int[pre.length - (k + 1)];
int[] inLeft = new int[k];
int[] inRight = new int[pre.length - (k + 1)];
int count = 0;
for(int i = 1; i <= k; i++){
preLeft[count] = pre[i];
count++;
}
count = 0;
for(int i = k + 1; i < pre.length; i++){
preRight[count] = pre[i];
count++;
}
count = 0;
for(int i = 0; i < k; i++){
inLeft[count] = in[i];
count++;
}
count = 0;
for(int i = k + 1; i < in.length; i++){
inRight[count] = in[i];
count++;
}
tree.left = reConstructBinaryTree(preLeft, inLeft);
tree.right = reConstructBinaryTree(preRight, inRight);
}
return tree;
}
}