正弦定理:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径(a/sinA = b/sinB =c/sinC = 2r=D)
在直角三角形中:
sinA=a/D=对边/斜边 (直角三角形中,它的外接圆的直径一定等于该直角三角形的斜边,非直角三角形此式子不适用)
---
余弦定理是:三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍,即若在三角形ABC中,a,b,c分别为角A、角B、角C的对边,则余弦定理可用下列等式表示: a^2=b^2+c^2-2bccosA。
在直角三角形中:
勾股定理是余弦定理的特例:因为C^2=a^2+b^2-2abCosC(cosC=0)=>c^2=a^2+b^2