bzoj 2669

容斥原理结合动态规划

这种容斥套DP的题又好久没写了,我好菜啊

给我一周我也想不到这题的DP~~~

由于局部最小值只能有<=8个,

我们就从小到大枚举i,用f[i][j]表示当前枚举到i,局部最小值的状态为j的方案数

则:f[i][j]=f[i-1][j]*(可以放的位置+已经放的局部最小值-i+1)+{f[i-1][k^j]}(k是j的元素)

由于有点号的点被钦定不是局部最小值,就需要容斥一下

复杂度大概是能过的.

#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 12345678
using namespace std;
char str[4][7],vis[4][7];
int ans=0;
int n,m,cnt[1<<9],f[30][1<<9],px[10],py[10];
int dx[8]={1,-1,0,0,1,-1,1,-1},
	dy[8]={0,0,1,-1,1,1,-1,-1};
bool inmap(int x,int y){
	return x>=0&&x<n&&y>=0&&y<m;
}
int calc(){
//	printf("---------------\n");
//	for(int i=0;i<n;++i)printf("%s\n",str[i]);
	int top=0;
	for(int i=0;i<n;++i)
		for(int j=0;j<m;++j)
			if(str[i][j]=='X')
				px[top]=i,py[top++]=j;
	memset(cnt,0,sizeof(cnt));
	for(int i=0;i<(1<<top);++i){
		memset(vis,0,sizeof(vis));
		for(int j=0;j<top;++j)if(~i&(1<<j)){
			for(int k=0;k<8;++k){
				int ni=px[j]+dx[k],nj=py[j]+dy[k];
				if(!inmap(ni,nj))continue;
				vis[ni][nj]=1;
			}
			vis[px[j]][py[j]]=1;
		}
		for(int j=0;j<n;++j)
			for(int k=0;k<m;++k)
				if(!vis[j][k])cnt[i]++;
	//	printf("[%d:%d]",i,cnt[i]);
	}
	int p=n*m;
	memset(f,0,sizeof(f));
	f[0][0]=1;
	for(int i=1;i<=p;++i)
		for(int j=0;j<(1<<top);++j){
			for(int k=0;k<top;k++)if(j&(1<<k))
				(f[i][j]+=f[i-1][j^(1<<k)])%=mod;
			(f[i][j]+=1ll*f[i-1][j]*max(0,cnt[j]-i+1)%mod)%=mod;
	//		printf("{%d}",f[i][j]);
		}
//i	printf("[%d]",top);
	return f[p][(1<<top)-1];
}
void dfs(int x,int y,int f){
	if(y==m){ans=(ans+1ll*calc()*f%mod)%mod;return ;}
	else if(x==n){dfs(0,y+1,f);return;}
	else dfs(x+1,y,f);
	if(str[x][y]!='X'){
		for(int k=0;k<8;++k){
			int nx=x+dx[k],ny=dy[k]+y;
			if(inmap(nx,ny)&&str[nx][ny]=='X')goto end;
		}
		str[x][y]='X';
		dfs(x+1,y,-f);
		str[x][y]='.';
		end:;
	}
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=0;i<n;++i)scanf("%s",str[i]);
	dfs(0,0,1);
	printf("%d",(ans%mod+mod)%mod);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值