【bzoj2669】【cqoi2012】【局部极小值】【状压dp】

Description

有一个nm列的整数矩阵,其中1到nm之间的每个整数恰好出现一次。如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值。
给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵。

Input

输入第一行包含两个整数nm(1<=n<=4, 1<=m<=7),即行数和列数。以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值。
 

Output

输出仅一行,为可能的矩阵总数除以12345678的余数。

Sample Input

3 2
X.
..
.X

Sample Output

60
题解:
考虑将1-n*m依次往矩阵里填。
因为局部极小值的数量不会超过8,所以我们可以将每个局部极小值是否填写压成一维状态。
设f[i][j]表示填到第i个数,局部极小值的填写状态为j的方案数。
转移时预处理数组p[j]表示当局部极小值的填写状态为j时有哪些位置可以填数。
枚举当前数是否填在局部极小值的位置上。
f[i][j]=f[i-1][j]*(p[j]-i+1)+f[i-1][k]
但是这样会把一些不是局部极小值的位置当成局部极小值。
所以我们容斥一下即可。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define P 12345678
using namespace std;
int dx[9]={1,0,-1,0,1,-1,1,-1,0},dy[9]={0,1,0,-1,1,-1,-1,1,0};
int n,m,ans,i,l,f[30][1<<8],p[1<<8],vis[8][8],a[10][2];
char ch[8][8];
int dp(){
  memset(f,0,sizeof(f));
  memset(p,0,sizeof(p));
  int top(0);
  for(int i=1;i<=n;i++)
   for (int j=1;j<=m;j++)
    if (ch[i][j]=='X')
      a[++top][0]=i,a[top][1]=j; 
  for (int k=0;k<(1<<top);k++){
    memset(vis,0,sizeof(vis));
    for (int i=1;i<=top;i++)
     if (~k&(1<<i-1)) vis[a[i][0]][a[i][1]]=1; 
    for(int i=1;i<=n;i++)
     for(int j=1;j<=m;j++){
      for (l=0;l<9;l++)
       if (vis[i+dx[l]][j+dy[l]]) break; 
      if (l==9) p[k]++;
     }
  }
  f[0][0]=1;
  for (int i=1;i<=n*m;i++)
   for (int j=0;j<(1<<top);j++){
    (f[i][j]+=(long long)f[i-1][j]*max(p[j]-i+1,0))%=P;
    for (int k=1;k<=top;k++)
      if(j&(1<<k-1)) (f[i][j]+=f[i-1][j^(1<<k-1)])%=P; 
   }
  return f[n*m][(1<<top)-1];
}
void dfs(int x,int y,int t){
  if(y==m+1){dfs(x+1,1,t);return;}
  if(x==n+1){(ans+=dp()*(t&1?-1:1))%=P;return;}
  dfs(x,y+1,t);
  for (i=0;i<9;i++)
   if (ch[x+dx[i]][y+dy[i]]=='X') break;
  if (i==9){ch[x][y]='X';dfs(x,y+1,t+1);ch[x][y]='.';} 
}
int main(){
 scanf("%d%d",&n,&m);
 for (int i=1;i<=n;i++) scanf("%s",ch[i]+1); 
 for (int i=1;i<=n;i++)
  for (int j=1;j<=m;j++)
   if (ch[i][j]=='X')
    for (int k=0;k<8;k++)
     if (ch[i+dx[k]][j+dy[k]]=='X')
      return printf("0"),0;
 dfs(1,1,0);
 cout<<(ans+P)%P<<endl;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权为 $a_x+a_y$,求所有满足条件的路径中,所有点的权和的最小。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权和的最小。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权求出来,然后将其看作是一个有权的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权和的最小。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权和的最小,然后再将这个加上当前节点的权,就可以得到从根节点到当前节点的路径中,所有点的权和的最小。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权和为 $s$ 的最小,那么我们就可以得到如下的态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值